login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232599
Alternating sum of cubes, i.e., Sum_{k=0..n} k^p*q^k for p=3, q=-1.
14
0, -1, 7, -20, 44, -81, 135, -208, 304, -425, 575, -756, 972, -1225, 1519, -1856, 2240, -2673, 3159, -3700, 4300, -4961, 5687, -6480, 7344, -8281, 9295, -10388, 11564, -12825, 14175, -15616, 17152, -18785, 20519
OFFSET
0,3
LINKS
FORMULA
a(n) = ((-1)^n*(4*n^3+6*n^2-1) +1)/8.
G.f.: (-x)*(1-4*x+x^2) / ( (1-x)*(1+x)^4 ). - R. J. Mathar, Nov 23 2014
E.g.f.: (exp(x) - (1 +10*x -18*x^2 +4*x^3)*exp(-x))/8. - G. C. Greubel, Mar 31 2021
a(n) = - 3*a(n-1) - 2*a(n-2) + 2*a(n-3) + 3*a(n-4) + a(n-5). - Wesley Ivan Hurt, Mar 31 2021
EXAMPLE
a(3) = 0^3 - 1^3 + 2^3 - 3^3 = -20.
MAPLE
A232599:= n-> (1 -(-1)^n*(1 -6*n^2 -4*n^3))/8; seq(A232599(n), n=0..30); # G. C. Greubel, Mar 31 2021
MATHEMATICA
Accumulate[Times@@@Partition[Riffle[Range[0, 40]^3, {1, -1}, {2, -1, 2}], 2]] (* Harvey P. Dale, Jul 22 2016 *)
PROG
(PARI) S3M1(n)=((-1)^n*(4*n^3+6*n^2-1)+1)/8;
v = vector(10001); for(k=1, #v, v[k]=S3M1(k-1))
(Magma) [(1 - (-1)^n*(1 -6*n^2 -4*n^3))/8: n in [0..30]]; // G. C. Greubel, Mar 31 2021
(Sage) [(1 - (-1)^n*(1 -6*n^2 -4*n^3))/8 for n in (0..30)] # G. C. Greubel, Mar 31 2021
CROSSREFS
Cf. A000578 (cubes), A011934 (absolute values), A059841 (p=0,q=-1), A130472 (p=1,q=-1), A089594 (p=2,q=-1), A126646 (p=0,q=2), A036799 (p=1,q=2), A036800 (p=2,q=2), A036827 (p=3,q=2), A077925 (p=0,q=-2), A232600 (p=1,q=-2), A232601 (p=2,q=-2), A232602 (p=3,q=-2), A232603 (p=2,q=-1/2), A232604 (p=3,q=-1/2).
Sequence in context: A143058 A298488 A175428 * A011934 A159222 A100206
KEYWORD
sign,easy
AUTHOR
Stanislav Sykora, Nov 26 2013
STATUS
approved