OFFSET
1,3
COMMENTS
T(n,k) is the number of preferential arrangements of the k-part partitions of the set {1...n}.
2*T(n,k) is the number of formulas in first order logic that have an n-place predicate and use k variables, but don't include a negator.
4*T(n,k) is the number of such formulas that may include an negator.
The entries T(n,n) are A000670(n), i.e. the ordered Bell numbers.
LINKS
Tilman Piesk, First 100 rows, flattened
Tilman Piesk, Preferential arrangements of set partitions (Wikiversity)
FORMULA
T(n,n) = A000670(n).
T(n,2) = A068156(n-1).
From Peter Bala, Nov 27 2013: (Start)
E.g.f.: 1/( 2 - exp(x*(exp(t) - 1)) ) = 1 + x*t + (x + 3*x^2)*t^2/2! + (x + 9*x^2 + 13*x^3)*t^3/3! + ....
Recurrence equation (for entries not on main diagonal): (n - k)*T(n,k) = C(n,1)*T(n-1,k) - C(n,2)*T(n-2,k) + C(n,3)*T(n-3,k) - ... (End)
EXAMPLE
Let the colon ":" be a separator between two levels. E.g. in {1,2}:{3} the set {1,2} is on the first level, the set {3} is on the second level.
a(3,1) = 1:
{1,2,3}
a(3,2) = 9:
{1,2}{3}
{1,3}{2}
{2,3}{1}
{1,2}:{3} {3}:{1,2}
{1,3}:{2} {2}:{1,3}
{2,3}:{1} {1}:{2,3}
a(3,3) = 13:
{1}{2}{3}
{1}{2}:{3} {3}:{1}{2}
{1}{3}:{2} {2}:{1}{3}
{2}{3}:{1} {1}:{2}{3}
{1}:{2}:{3}
{1}:{3}:{2}
{2}:{1}:{3}
{2}:{3}:{1}
{3}:{1}:{2}
{3}:{2}:{1}
Triangle begins:
k = 1 2 3 4 5 6 7 8 sums
n
1 1 1
2 1 3 4
3 1 9 13 23
4 1 21 78 75 175
5 1 45 325 750 541 1662
6 1 93 1170 4875 8115 4683 18937
7 1 189 3913 26250 75740 98343 47293 251729
8 1 381 12558 127575 568050 1245678 1324204 545835 3824282
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Tilman Piesk, Nov 26 2013
STATUS
approved