login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130472
A permutation of the integers: a(n) = (-1)^n * floor( (n+1)/2 ).
29
0, -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, -14, 14, -15, 15, -16, 16, -17, 17, -18, 18, -19, 19, -20, 20, -21, 21, -22, 22, -23, 23, -24, 24, -25, 25, -26, 26, -27, 27, -28, 28, -29, 29, -30, 30, -31, 31, -32, 32
OFFSET
0,4
COMMENTS
Pisano period lengths: 1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, ... - R. J. Mathar, Aug 10 2012
Partial sums of A038608. - Stanislav Sykora, Nov 27 2013
FORMULA
a(n) = -A001057(n).
a(2n) = n, a(2n+1) = -(n+1).
a(n) = Sum_{k=0..n} k*(-1)^k.
a(n) = -a(n-1) +a(n-2) +a(n-3).
G.f.: -x/( (1-x)*(1+x)^2 ). - R. J. Mathar, Feb 20 2011
a(n) = floor( (n/2)*(-1)^n ). - Wesley Ivan Hurt, Jun 14 2013
a(n) = ceiling( n/2 )*(-1)^n. - Wesley Ivan Hurt, Oct 22 2013
a(n) = ((-1)^n*(2*n+1) - 1)/4. - Adriano Caroli, Mar 28 2015
E.g.f.: (1/4)*(-exp(x) + (1-2*x)*exp(-x) ). - G. C. Greubel, Mar 31 2021
MAPLE
A130472:=n->ceil(n/2)*(-1)^n; seq(A130472(k), k=0..50); # Wesley Ivan Hurt, Oct 22 2013
MATHEMATICA
CoefficientList[Series[(x^2-x)/(1-x^2)^2, {x, 0, 64}], x] (* Geoffrey Critzer, Sep 29 2013 *)
LinearRecurrence[{-1, 1, 1}, {0, -1, 1}, 70] (* Harvey P. Dale, Mar 02 2018 *)
PROG
(Magma) [((-1)^n*(2*n+1)-1)/4: n in [0..80]]; // Vincenzo Librandi, Mar 29 2015
(PARI) a(n)=(-1)^n*n\2 \\ Charles R Greathouse IV, Sep 02 2015
(Sage) [((-1)^n*(2*n+1) - 1)/4 for n in (0..70)] # G. C. Greubel, Mar 31 2021
CROSSREFS
Sums of the form Sum_{k=0..n} k^p * q^k: A059841 (p=0,q=-1), this sequence (p=1,q=-1), A089594 (p=2,q=-1), A232599 (p=3,q=-1), A126646 (p=0,q=2), A036799 (p=1,q=2), A036800 (p=2,q=2), A036827 (p=3,q=2), A077925 (p=0,q=-2), A232600 (p=1,q=-2), A232601 (p=2,q=-2), A232602 (p=3,q=-2), A232603 (p=2,q=-1/2), A232604 (p=3,q=-1/2).
Sequence in context: A168050 A001057 A127365 * A076938 A065033 A080513
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, May 28 2007
STATUS
approved