OFFSET

0,4

COMMENTS

Gives the number of terms in n-th row of many common tables.

Number of partitions of the (n+1)-th Fibonacci number into distinct Fibonacci numbers: a(n) = A000119(A000045(n)), see also A098641. - Reinhard Zumkeller, Apr 24 2005

a(n) = length of run n+1 of consecutive 4s in A254338. - Reinhard Zumkeller, Feb 27 2015

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..1000

Andrei Asinowski, Cyril Banderier, Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

a(0)=a(1)=a(2)=1, a(3)=2, a(n) = a(n-1)+a(n-2)-a(n-3) for n>3 . G.f.: (1-x^2+x^3)/(1-x-x^2+x^3). - Philippe Deléham, Sep 28 2006

a(n) = floor((n+1)/2) + 0^n. - Reinhard Zumkeller, Feb 27 2015

MATHEMATICA

Array[Floor[#/2] &, 61] /. 0 -> 1 (* Michael De Vlieger, Mar 10 2020 *)

PROG

(PARI) { for (n=0, 1000, if (n<3, a=1, if (n%2, a++)); write("b065033.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 03 2009

(Haskell)

a065033 n = 0 ^ n + div (n + 1) 2 -- Reinhard Zumkeller, Feb 27 2015

CROSSREFS

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Nov 04 2001

STATUS

approved