OFFSET
0,6
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
M. Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8.
Index entries for linear recurrences with constant coefficients, signature (1,1,-1)
FORMULA
G.f.: (1 - 2x^2 - x^3 + x^4)/((1+x)(1-x)^2).
a(n) = + 1*a(n-1) + 1*a(n-2) - 1*a(n-3). - Joerg Arndt, Apr 02 2011
a(n) = (-1)^n/4 -(2n-3)/4 + C(1,n) - C(0,n).
E.g.f.: (4*x + exp(-x) - (2*x - 3)*exp(x))/4. - Ilya Gutkovskiy, Jul 08 2016
MATHEMATICA
Join[{1, 1, b=0}, a=0; Table[c=b+2*a+n; a=b; b=c, {n, -1, 60}]] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011 *)
CoefficientList[Series[(1 - 2 x^2 - x^3 + x^4)/((1 + x) (1 - x)^2), {x, 0, 100}], x] (* G. C. Greubel, Jul 07 2016 *)
Table[(-1)^n/4 - (2 n - 3)/4 + Binomial[1, n] - Binomial[0, n], {n, 0, 80}] (* Vincenzo Librandi, Jul 08 2016 *)
LinearRecurrence[{1, 1, -1}, {1, 1, 0, -1, -1}, 60] (* Harvey P. Dale, Dec 05 2018 *)
PROG
(Magma) [(-1)^n/4-(2*n-3)/4+Binomial(1, n)-Binomial(0, n): n in [0..80]]; // Vincenzo Librandi, Jul 08 2016
(PARI) Vec((1-2*x^2-x^3+x^4)/((1+x)*(1-x)^2) + O(x^99)) \\ Altug Alkan, Jul 08 2016
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Nov 17 2009
STATUS
approved