The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126646 a(n) = 2^(n+1) - 1. 42
 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3,4,5,6 and 7 and at least one of the digits 8,9. Partial sums of the powers of 2 (A000079). a(n) is the number of elements (all m-dimensional faces) in an n-dimensional simplex (0 <= m <= n). - Sergey Pavlov, Aug 15 2015 A261461(a(n)) != A261922(a(n)). - Reinhard Zumkeller, Sep 17 2015 a(n) is the total number of matches in a knockout tournament with 2^n players. - Paul Duckett, Dec 12 2022 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7. Wikipedia, Simplex Elements (see last column of table). Index entries for linear recurrences with constant coefficients, signature (3,-2). FORMULA a(n-1)^2 + a(n) = a(2n) + 1, a square. - Vincenzo Librandi and Ralf Stephan, Nov 23 2010 G.f.: 1/ ( (1-2*x)*(1-x) ). - R. J. Mathar, Dec 02 2013 a(n) = 3*a(n-1) - 2*a(n-2), n > 1. - Wesley Ivan Hurt, Aug 21 2015 E.g.f.: 2*exp(2*x) - exp(x). - G. C. Greubel, Mar 31 2021 EXAMPLE a(8) = 2^9 - 1 = 511. MAPLE A126646:=n->2*2^n-1; seq(A126646(n), n=0..50); # Wesley Ivan Hurt, Dec 02 2013 MATHEMATICA Table[2^(n+1) - 1, {n, 0, 50}] (* Wesley Ivan Hurt, Dec 02 2013 *) LinearRecurrence[{3, -2}, {1, 3}, 40] (* Harvey P. Dale, Mar 23 2018 *) PROG (PARI) first(m)=vector(m, i, i--; 2^(i+1)-1) /* Anders Hellström, Aug 19 2015 */ (Magma) [2^(n+1)-1: n in [0.. 35]]; // Vincenzo Librandi, Aug 20 2015 (Haskell) a126646 = (subtract 1) . (2 ^) . (+ 1) a126646_list = iterate ((+ 1) . (* 2)) 1 -- Reinhard Zumkeller, Sep 17 2015 (Sage) [2^(n+1) -1 for n in (0..50)] # G. C. Greubel, Mar 31 2021 CROSSREFS Essentially the same as A000225. Cf. A125630, A125945, A125947, A125948, A125940, A125909, A125908, A125880, A125897, A125904, A125858. Cf. A000079, A168604. Cf. A261461, A261922. Sequence in context: A336700 A097002 A060152 * A225883 A255047 A000225 Adjacent sequences: A126643 A126644 A126645 * A126647 A126648 A126649 KEYWORD nonn,easy AUTHOR Aleksandar M. Janjic and Milan Janjic, Feb 08 2007, Feb 13 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 16:37 EST 2023. Contains 367693 sequences. (Running on oeis4.)