|
|
A126646
|
|
a(n) = 2^(n+1) - 1.
|
|
42
|
|
|
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3,4,5,6 and 7 and at least one of the digits 8,9.
Partial sums of the powers of 2 (A000079).
a(n) is the number of elements (all m-dimensional faces) in an n-dimensional simplex (0 <= m <= n). - Sergey Pavlov, Aug 15 2015
a(n) is the total number of matches in a knockout tournament with 2^n players. - Paul Duckett, Dec 12 2022
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(8) = 2^9 - 1 = 511.
|
|
MAPLE
|
|
|
MATHEMATICA
|
LinearRecurrence[{3, -2}, {1, 3}, 40] (* Harvey P. Dale, Mar 23 2018 *)
|
|
PROG
|
(PARI) first(m)=vector(m, i, i--; 2^(i+1)-1) /* Anders Hellström, Aug 19 2015 */
(Haskell)
a126646 = (subtract 1) . (2 ^) . (+ 1)
a126646_list = iterate ((+ 1) . (* 2)) 1
(Sage) [2^(n+1) -1 for n in (0..50)] # G. C. Greubel, Mar 31 2021
|
|
CROSSREFS
|
Cf. A125630, A125945, A125947, A125948, A125940, A125909, A125908, A125880, A125897, A125904, A125858.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Aleksandar M. Janjic and Milan Janjic, Feb 08 2007, Feb 13 2007
|
|
STATUS
|
approved
|
|
|
|