login
A125908
a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks the digits 1 and 2 and at least one of digits 3,4,5,6,7,8,9.
19
8, 64, 512, 4096, 32768, 262144, 2092112, 16595776, 130437728, 1013866624, 7788438512, 59145432256, 444357721088, 3306242197504, 24389881261712, 178578361769536, 1299058046034848, 9397253451942784, 67653687455953712, 485065987257543616
OFFSET
1,1
FORMULA
a(n) = 7*7^n-21*6^n+35*5^n-35*4^n+21*3^n-7*2^n+1.
G.f.: -8*x*(630*x^6 -1476*x^5 +1457*x^4 -664*x^3 +162*x^2 -20*x +1)/((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)). - Colin Barker, Feb 22 2015
EXAMPLE
a(8) = 16595776.
MAPLE
f:=n->7*7^n-21*6^n+35*5^n-35*4^n+21*3^n-7*2^n+1;
PROG
(PARI) Vec(-8*x*(630*x^6-1476*x^5+1457*x^4-664*x^3+162*x^2-20*x+1)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015
CROSSREFS
Cf. A125630.
Sequence in context: A269655 A250360 A190130 * A206454 A001018 A097682
KEYWORD
nonn,base,easy
AUTHOR
Aleksandar M. Janjic and Milan Janjic, Feb 04 2007
STATUS
approved