OFFSET
0,1
COMMENTS
Newman proves that k always exists for all n. Surprisingly, it appears that only 19 values of k suffice for all n. Note that a(n) = 26 when n = 2 (mod 12), a(n) = 13 when n = 3 (mod 12), a(n) = 41 when n = 6 (mod 12) and a(n) = 73 when n = 7 (mod 12). Is this sequence periodic?
A091025 shows why this sequence has only a finite number of distinct terms.
LINKS
D. J. Newman, Euler's phi function on arithmetic progressions, Amer. Math. Monthly, Vol. 104, No. 3 (Mar. 1997), pp. 256-257.
MATHEMATICA
Table[k=1; While[EulerPhi[1+k*2^n] > EulerPhi[k*2^n], k++ ]; k, {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Dec 09 2003
STATUS
approved