The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106297 Period of the Lucas 5-step sequence A074048 mod n. 4
 1, 1, 104, 6, 781, 104, 2801, 12, 312, 781, 16105, 312, 30941, 2801, 81224, 24, 88741, 312, 13032, 4686, 291304, 16105, 12166, 312, 3905, 30941, 936, 16806, 70728, 81224, 190861, 48, 1674920, 88741, 2187581, 312, 1926221, 13032, 3217864, 9372, 2896405 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS This sequence differs from the corresponding Fibonacci sequence (A106303) at all n that are multiples of 2 or 599 because 9584 is the discriminant of the characteristic polynomial x^5-x^4-x^3-x^2-x-1 and the prime factors of 9584 are 2 and 599. LINKS Eric Weisstein's World of Mathematics, Fibonacci n-Step FORMULA Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)). Conjectures: a(5^k) = 781*5^(k-1) for k > 0. a(2^k) = 3*2^(k-1) for k > 1. If a(p) != a(p^2) for prime p > 2, then a(p^k) = p^(k-1)*a(p) for k > 0. - Chai Wah Wu, Feb 25 2022 MATHEMATICA n=5; Table[p=i; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 50}] PROG (Python) from itertools import count def A106297(n):     a = b = (5%n, 1%n, 7%n, 3%n, 15%n)     s = sum(b) % n     for m in count(1):         b, s = b[1:] + (s, ), (s+s-b) % n         if a == b:             return m # Chai Wah Wu, Feb 22-27 2022 CROSSREFS Cf. A074048, A106303 (period of Fibonacci 5-step sequence mod n), A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1). Sequence in context: A088584 A238490 A097014 * A090849 A091025 A054904 Adjacent sequences:  A106294 A106295 A106296 * A106298 A106299 A106300 KEYWORD nonn AUTHOR T. D. Noe, May 02 2005, Nov 19 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 16:07 EDT 2022. Contains 356107 sequences. (Running on oeis4.)