OFFSET
1,1
COMMENTS
If a prime p divides a term a(k) of this sequence, then k must be less than the period of the sequence mod p. Hence these primes are found by computing A073817(k) mod p for increasing k and stopping when either A073817(k) mod p = 0 or the end of the period is reached. Interestingly, for all of these primes, the period of the sequence A073817(k) mod p appears to be (p-1)/d, where d is a small integer.
LINKS
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
MATHEMATICA
n=4; lst={}; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; While[s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; !(a==a0 || s==0)]; If[s>0, AppendTo[lst, p]], {i, 10000}]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, May 02 2005
STATUS
approved