login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073817 Tetranacci numbers with different initial conditions: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) starting with a(0)=4, a(1)=1, a(2)=3, a(3)=7. 41
4, 1, 3, 7, 15, 26, 51, 99, 191, 367, 708, 1365, 2631, 5071, 9775, 18842, 36319, 70007, 134943, 260111, 501380, 966441, 1862875, 3590807, 6921503, 13341626, 25716811, 49570747, 95550687, 184179871, 355018116, 684319421, 1319068095, 2542585503 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

These tetranacci numbers follow the same pattern as Lucas and generalized tribonacci(A001644) numbers: Binet's formula is a(n) = r1^n + r^2^n + r3^n + r4^n, with r1, r2, r3, r4 roots of the characteristic polynomial.

For n >= 4, a(n) is the number of cyclic sequences consisting of n zeros and ones that do not contain four consecutive ones provided the positions of the zeros and ones are fixed on a circle. This is proved in Charalambides (1991) and Zhang and Hadjicostas (2015). For example, a(4)=15 because only the sequences 1110, 1101, 1011, 0111, 0011, 0101, 1001, 1010, 0110, 1100, 0001, 0010, 0100, 1000, 0000 avoid four consecutive ones on a circle. (For n=1,2,3 the statement is still true provided we allow the sequence to wrap around itself on a circle. For example, a(2)=3 because only the sequences 00, 01, 10 avoid four consecutive ones when wrapped around on a circle.) - Petros Hadjicostas, Dec 18 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.

C. A. Charalambides, Lucas numbers and polynomials of order k and the length of the longest circular success run, The Fibonacci Quarterly, 29 (1991), 290-297.

P. Hadjicostas, Cyclic Compositions of a Positive Integer with Parts Avoiding an Arithmetic Sequence, Journal of Integer Sequences, 19 (2016), #16.8.2.

Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4

J. L. Ramírez, V. F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38.

Yüksel Soykan, Gaussian Generalized Tetranacci Numbers, arXiv:1902.03936 [math.NT], 2019.

Yüksel Soykan, Tetranacci and Tetranacci-Lucas Quaternions, arXiv:1902.05868 [math.RA], 2019.

E. Weisstein, Fibonacci n-Step

L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.

Index entries for linear recurrences with constant coefficients, signature (1,1,1,1).

FORMULA

G.f.: (4 - 3*x - 2*x^2 - x^3)/(1 - x - x^2 - x^3 - x^4).

a(n) = 2*a(n-1) - a(n-5), with a(0)=4, a(1)=1, a(2)=3, a(3)=7, a(4)=15. - Vincenzo Librandi, Dec 20 2010

a(n) = A000078(n+2) + 2*A000078(n+1) + 3*A000078(n) + 4*A000078(n-1). - Advika Srivastava, Aug 22 2019

a(n) = 8*a(n-3) - a(n-5) - 2*a(n-6) - 4*a(n-7). - Advika Srivastava, Aug 25 2019

MATHEMATICA

a[0]=4; a[1]=1; a[2]=3; a[3]=7; a[4]=15; a[n_]:= 2*a[n-1] -a[n-5]; Array[a, 34, 0]

CoefficientList[Series[(4-3x-2x^2-x^3)/(1-x-x^2-x^3-x^4), {x, 0, 40}], x]

LinearRecurrence[{1, 1, 1, 1}, {4, 1, 3, 7}, 40] (* Harvey P. Dale, Jun 01 2015 *)

PROG

(PARI) Vec((4-3*x-2*x^2-x^3)/(1-x-x^2-x^3-x^4) + O(x^40)) \\ Michel Marcus, Jan 29 2016

(MAGMA) I:=[4, 1, 3, 7]; [n le 4 select I[n] else Self(n-1) +Self(n-2) +Self(n-3) +Self(n-4): n in [1..40]]; // G. C. Greubel, Feb 19 2019

(Sage) ((4-3*x-2*x^2-x^3)/(1-x-x^2-x^3-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 19 2019

(GAP) a:=[4, 1, 3, 7];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+a[n-3] +a[n-4]; od; a; # G. C. Greubel, Feb 19 2019

CROSSREFS

Cf. A000078, A001630, A001644, A000032, A106295 (Pisano periods). Two other versions: A001648, A074081.

Sequence in context: A200171 A109531 A200132 * A074081 A132703 A176217

Adjacent sequences:  A073814 A073815 A073816 * A073818 A073819 A073820

KEYWORD

nonn,easy,changed

AUTHOR

Mario Catalani (mario.catalani(AT)unito.it), Aug 12 2002

EXTENSIONS

Typo in definition corrected by Vincenzo Librandi, Dec 20 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 09:25 EDT 2019. Contains 327995 sequences. (Running on oeis4.)