The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053028 Odd primes p with 4 zeros in any period of the Fibonacci numbers mod p. 30
 5, 13, 17, 37, 53, 61, 73, 89, 97, 109, 113, 137, 149, 157, 173, 193, 197, 233, 257, 269, 277, 293, 313, 317, 337, 353, 373, 389, 397, 421, 433, 457, 557, 577, 593, 613, 617, 653, 661, 673, 677, 701, 733, 757, 761, 773, 797, 821, 829, 853, 857, 877, 937, 953 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also, primes that do not divide any Lucas number. - T. D. Noe, Jul 25 2003 Although every prime divides some Fibonacci number, this is not true for the Lucas numbers. In fact, exactly 1/3 of all primes do not divide any Lucas number. See Lagarias and Moree for more details. The Lucas numbers separate the primes into three disjoint sets: (A053028) primes that do not divide any Lucas number, (A053027) primes that divide Lucas numbers of even index and (A053032) primes that divide Lucas numbers of odd index. - T. D. Noe, Jul 25 2003; revised by N. J. A. Sloane, Feb 21 2004 LINKS T. D. Noe, Table of n, a(n) for n=1..1000 C. Ballot and M. Elia, Rank and period of primes in the Fibonacci sequence; a trichotomy, Fib. Quart., 45 (No. 1, 2007), 56-63 (The sequence B2). J. C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math., 118. No. 2, (1985), 449-461. J. C. Lagarias, Errata to: The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math., 162, No. 2, (1994), 393-396. Diego Marques and Pavel Trojovsky, The order of appearance of the product of five consecutive Lucas numbers, Tatra Mountains Math. Publ. 59 (2014), 65-77. Pieter Moree, Counting Divisors of Lucas Numbers, Pacific J. Math, Vol. 186, No. 2, 1998, pp. 267-284. M. Renault, Fibonacci sequence modulo m H. Sedaghat, Zero-Avoiding Solutions of the Fibonacci Recurrence Modulo A Prime, Fibonacci Quart. 52 (2014), no. 1, 39-45. See p. 45. Eric Weisstein's World of Mathematics, Lucas Number FORMULA A prime p = prime(i) is in this sequence if p > 2 and A001602(i) is odd. - T. D. Noe, Jul 25 2003 MATHEMATICA Lucas[n_] := Fibonacci[n+1] + Fibonacci[n-1]; badP={}; Do[p=Prime[n]; k=1; While[k0, k++ ]; If[k==p, AppendTo[badP, p]], {n, 200}]; badP CROSSREFS Cf. A001176. Cf. A000204 (Lucas numbers), A001602 (index of the smallest Fibonacci number divisible by prime(n)), A053027, A053032. Sequence in context: A191108 A216575 A306626 * A189411 A248980 A188131 Adjacent sequences:  A053025 A053026 A053027 * A053029 A053030 A053031 KEYWORD nonn AUTHOR Henry Bottomley, Feb 23 2000 EXTENSIONS Edited: Name clarified. Moree and Renault link updated. Ballot and Elia reference linked. - Wolfdieter Lang, Jan 20 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 09:02 EDT 2021. Contains 348041 sequences. (Running on oeis4.)