
0 Some basics of p-adic valuation
Let F be a field with a non-archimedean valuation v.

Lemma 0.1. For x, y, t ∈ F such that v(k) ≥ 0, we have min{v(tx+ y), v(x)} = min{v(x), v(y)}.

Proof. If v(y) < v(x), then v(kx+ y) = v(y + valuation > v(y)) = v(y), so both sides are equal to v(y).
If v(y) ≥ v(x), then v(kx+ y) ≥ min{v(k) + v(x), v(y)} ≥ v(x), so both sides are equal to v(x).

Lemma 0.2. Suppose that char k ̸= 2. Pick k ∈ F such that v(k) ≥ 0. Suppose that F contains a
square root

√
k + 2 of k + 2 and a square root

√
k − 2 of k − 2, then we have

vp

(
±
√
k + 2±

√
k − 2

2

)
= 0.

Proof. The quantities ±
√
k + 2±

√
k − 2

2
are the roots of

x4 − kx2 + 1 = 0.

If vp(x) > 0, then we have vp(x
4 − kx2 +1) = vp(1 + (valuation > 0)) = 0, impossible. If vp(x) < 0, then we

have vp(x
4 − kx2 + 1) = vp(x

4 + (valuation > vp(x
4))) = 4vp(x) < 0, impossible.

Now suppose that F is of characteristic 0. We extend the p-adic valuation vp over Q to F (which is
always possible thanks to https://math.stackexchange.com/questions/4535894).

Lemma 0.3. If vp(x) >
1

p− 1
, then

vp((1 + x)p − 1) = vp(x) + 1.

Proof. We have

vp

((
p

i

)
xi

)
= vp

((
p

i

))
+ ivp(x) = ivp(x) + 1, 1 ≤ i ≤ p− 1

and
vp

((
p

p

)
xp

)
= pvp(x),

so
vp((1 + x)p − 1) = vp

((
p

1

)
x+ (valuation > 1 + vp(x))

)
= v(x) + 1.

Lemma 0.4. Let d ∈ Z, and suppose that p is an odd prime such that p ∤ d. Suppose that F contains
a square root

√
d of d, then we have vp(Q(

√
d)×) ∈ Z; in other words, the p-adic valuation of a nonzero

element in Q(
√
d) (as a subfield of F ) is an integer.

Proof. WLOG suppose that F is complete (if not, take the completion), then Qp ⊂ F . The result is
obvious if d is a quadratic residue modulo p (which means that

√
d ∈ Qp). If not, then by the uniqueness

of extending the p-adic valuation over Qp to an algebraic extension (see for example Theorem 4.8, p.131 of
Algebraic Number Theory by Neukirch), we have

vp(a+ b
√
d) =

1

2
vp(NmQp(

√
d)/Qp

(a+ b
√
d)) =

1

2
vp(a

2 − b2d).

It suffices to show that vp(a
2 − b2d) is even. WLOG suppose that a, b ∈ Z, not being divisible by p at the

same time. If p | (a2 − b2d), then ap−1 ≡ bp−1d
p−1
2 ≡ −bp−1 (mod p), which implies p | a, b, a contradiction.

We obtain then that vp(a
2 − b2d) = 0.

In the following sections, we will write pe | x for x ∈ Q(
√
d) if vp(x) ≥ e. If pe | (x − y), we write

x ≡ y (mod pe).
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1 Lucas sequences and entry point modulo p

Let k ≥ 3 be a fixed integer. Consider the sequence in Q(
√
k − 2) (an extension of Q that contains a

square root
√
k − 2) defined by

x0 = 0, x1 = 1, xn+2 =
√
k − 2xn+1 + xn, ∀n ∈ N.

(xn) is an increasing sequence, so xn > 0 for n ∈ N∗. We have

xn =



n−1
2∑

i=0

(
n

2i+ 1

)
(k + 2)i(k − 2)

n−1
2 −i

2n−1
, n odd;

√
k − 2

n
2 −1∑
i=0

(
n

2i+ 1

)
(k + 2)i(k − 2)

n
2 −1−i

2n−1
, n even,

(1)

and in Q(
√
k − 2,

√
k + 2) we have

xn =

(√
k − 2 +

√
k + 2

2

)n

−
(√

k − 2−
√
k + 2

2

)n

√
k + 2

.

We will always suppose henthforth that p is an odd prime such that p ∤ k − 2, and we extend the p-adic
valuation vp over Q to Q(

√
k − 2) and Q(

√
k − 2,

√
k + 2).

Lemma 1.1. For n,m ∈ N, we have min{vp(xn), vp(xm)} = vp(xgcd(n,m)).

Proof. By Lemma 0.1, we have

xm+1 =
√
k − 2xm + xm−1 ⇒ min{vp(xm+1), vp(xm)} = min{vp(xm), vp(xm−1)}, ∀m ∈ N∗,

so min{vp(xm), vp(xm−1)} = · · · = min{vp(x1), vp(x0)} = 0, which means that vp(xm) = 0 or vp(xm−1) = 0
for all m ∈ N∗. Now WLOG suppose that n ≥ m ≥ 1. By induction we have

xn = xmxn−m+1 + xm−1xn−m,

so Lemma 0.1 gives

min{vp(xn), vp(xm)} = min{vp(xm), vp(xm−1) + vp(xn−m)}.

But vp(xm) = 0 or vp(xm−1) = 0, so we obtain

min{vp(xn), vp(xm)} = min{vp(xm), vp(xn−m)}.

After finitely many steps, we obtain

min{vp(xn), vp(xm)} = min{vp(xgcd(n,m)), vp(x0)} = vp(xgcd(n,m)).

In particular, if n | m for n,m ∈ N, then vp(xm) ≥ vp(xn).
By (1), vp(xn) is always a nonnegative integer for n ∈ N∗. Define

r := min{n ∈ N∗ : vp(xn) ≥ 1}.

By Lemma 1.1, we have p | xn ⇔ r | n. The quantity r is called the entry point of (xn) modulo p. The
following property shows that r is well-defined.
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Proposition 1.1. We have p | x
p−

(
k2−4

p

), so r |
(
p−

(
k2 − 4

p

))
.

Proof. Since p is odd, (1) gives

xp+1√
k − 2

=

p−1
2∑

i=0

(
p+ 1

2i+ 1

)
(k + 2)i(k − 2)

p−1
2 −i

2p
≡ (k − 2)

p−1
2 + (k + 2)

p−1
2

2
(mod p);

xp−1√
k − 2

=

p−3
2∑

i=0

(
p− 1

2i+ 1

)
(k + 2)i(k − 2)

p−3
2 −i

2p−2
≡

−

p−3
2∑

i=0

(k + 2)i(k − 2)
p−3
2 −i

2p−2
≡ (k − 2)

p−1
2 − (k + 2)

p−1
2

2
(mod p);

xp =

p−1
2∑

i=0

(
n

2i+ 1

)
(k + 2)i(k − 2)

p−1
2 −i

2p−1
≡ (k + 2)

p−1
2 (mod p).

Proposition 1.2. If p ∤ (k2 − 4), then r |
p−

(
k2−4

p

)
2

if and only if
(
−(k − 2)

p

)
= 1.

Proof. We calculate x p−1
2
x p+1

2
modulo p. Write α =

√
k − 2 +

√
k + 2

2
, β =

√
k − 2−

√
k + 2

2
in

Q(
√
k − 2,

√
k + 2), then

x p−1
2
x p+1

2
=

(α
p−1
2 − β

p−1
2 )(α

p+1
2 − β

p+1
2 )

k + 2
=

(α
p−1
2 − β

p−1
2 )(α

p+1
2 − β

p+1
2 )

k + 2

=
αp + βp − (−1)

p−1
2

√
k − 2

k + 2
=

√
k − 2

p−1
2∑

i=0

(
p

2i

)
(k + 2)i(k − 2)

p−1
2 −i − (−1)

p−1
2

k + 2

≡
√
k − 2

(k − 2)
p−1
2 − (−1)

p−1
2

k + 2
(mod p),

so p | x p−1
2
x p+1

2
if and only if

(
−(k − 2)

p

)
= 1. If

(
−(k − 2)

p

)
= 1, then we have p | x p−1

2
or p | x p−1

2

(since vp

(
x p−1

2

)
, vp

(
x p+1

2

)
∈ N), but r |

(
p−

(
k2 − 4

p

))
, so r |

p−
(

k2−4
p

)
2

. If
(
−(k − 2)

p

)
= −1, then

p divides neither x p−1
2

nor x p−1
2

, so r ∤
p−

(
k2−4

p

)
2

.

Conclusion. Let p be an odd prime such that p ∤ (k2 − 4).

(1)
(
−(k − 2)

p

)
= 1,

(
k + 2

p

)
= −1.

Since r divides
p−

(
k2−4

p

)
2

=
p+

(
k2−4

p

)
2

, which is odd, r must be odd.

(2)
(
−(k − 2)

p

)
= −1,

(
k + 2

p

)
= −1.

Since r has the same number of factors 2 as p−
(
k2 − 4

p

)
= p−

(
−1

p

)
, which is a mulitple of 4,

r must be divisible by 4.
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(3)
(
−(k − 2)

p

)
= −1,

(
k + 2

p

)
= 1.

Since r has the same number of factors 2 as p −
(
k2 − 4

p

)
= p +

(
−1

p

)
, which is congruent to 2

modulo 4, we must have r ≡ 2 (mod 4).

(4)
(
−(k − 2)

p

)
= 1,

(
k + 2

p

)
= 1,

(
2

p

)
= 1 (p ≡ 1, 7 (mod 8)).

Conjecture: The relative densities of r odd, r ≡ 2 (mod 4) and 4 | r is respectively 1

6
, 1

6
and 2

3
.

(5)
(
−(k − 2)

p

)
= 1,

(
k + 2

p

)
= 1,

(
2

p

)
= −1 (p ≡ 3, 5 (mod 8)).

Since r divides
p−

(
k2−4

p

)
2

=

p−
(
−1

p

)
2

, which is not divisible by 4, r cannot be divisible by 4.

Conjecture: The relative densities of r odd and r ≡ 2 (mod 4) is respectively 1

2
and 1

2
.

Note that if k + 2

2
is a square, the last case cannot happen. Under the conjectures,

• If k + 2

2
is a square (cases (i)−(iv) with densities 1

4
, 1

4
, 1

4
, 1

4
), the relative densities of the three

cases are 1

4
× 1 +

1

4
× 0 +

1

4
× 0 +

1

4
× 1

6
=

7

24
, 1

4
× 0 +

1

4
× 0 +

1

4
× 1 +

1

4
× 1

6
=

7

24
and

1

4
× 0 +

1

4
× 1 +

1

4
× 0 +

1

4
× 2

3
=

5

12
.

• If k + 2 is a square (cases (iii)−(v) with densities 1

2
, 1

4
, 1

4
), the relative densities of the three cases

are 1

2
× 0 +

1

4
× 1

6
+

1

4
× 1

2
=

1

6
, 1

2
× 1 +

1

4
× 1

6
+

1

4
× 1

2
=

2

3
and 1

2
× 0 +

1

4
× 2

3
+

1

4
× 0 =

1

6
.

• In other cases (cases (i)−(v) with densities 1

4
, 1

4
, 1

4
, 1

8
, 1

8
), the relative densities of the three cases

are 1

4
× 1 +

1

4
× 0 +

1

4
× 0 +

1

8
× 1

6
+

1

8
× 1

2
=

1

3
, 1

4
× 0 +

1

4
× 0 +

1

4
× 1 +

1

8
× 1

6
+

1

8
× 1

2
=

1

3
and

1

4
× 0 +

1

4
× 1 +

1

4
× 0 +

1

8
× 2

3
+

1

8
× 0 =

1

3
.

We will explain in the next section the reason why we are interested in the three cases r odd, r ≡
2 (mod 4) and 4 | r.
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2 Number of zeros in a period modulo pe

Suppose that pe | xs for some s ∈ N. By recurrence we have

xn+s ≡ xs+1xn (mod pe) (2)

(the expression makes sense by Lemma 0.4), so we are interested in xs+1 mod pe. We have:
Lemma 2.1. x2

s+1 ≡ (−1)s (mod pe).
Proof. The result is obvious for s = 0. For s > 0, note that pe | xs implies that xs+1 ≡ xs−1 (mod pe).

Set A =

(√
k − 2 1
1 0

)
, then An =

(
xn+1 xn

xn xn−1

)
for n ∈ N∗, so

As ≡ xs+1I2 (mod pe).

Taking the determinant of both sides yields

x2
s+1 ≡ det(A)s = (−1)s (mod pe).

Lemma 2.2. If vp(xn) > 0 for some n ∈ N∗, then vp(xpn) = vp(xn) + 1.

Proof. Write α =

√
k − 2 +

√
k + 2

2
, β =

√
k − 2−

√
k + 2

2
in Q(

√
k − 2,

√
k + 2), then by Lemma 0.2

we have
vp(xn) = vp

(
αn − βn

√
k + 2

)
= vp

((
α

β

)n

− 1

)
− vp(

√
k + 2),

so we have vp

((
α

β

)n

− 1

)
≥ vp(xn) ≥ 1. By Lemma 0.3 we have

vp

((
α

β

)np

− 1

)
= vp

((
α

β

)n

− 1

)
+ 1,

which means that vp(xpn) = vp(xn) + 1.

Let
re := min{n ∈ N∗ : vp(xn) ≥ e};

since r1 is well-defined, the quantity is well-defined thanks to the lemma above. By Lemma 1.1, we have
pe | xn ⇔ re | n. By (2), the multiplicative order of xre+1 modulo pe representes the number of zeros in a
period of Lucas sequence modulo pe. We have:

Proposition 2.1.
• If re is odd, then the multiplicative order of xre+1 is 4;

• If re ≡ 2 (mod 4), then the multiplicative order of xre+1 is 1;

• If 4 | re, then the multiplicative order of xre+1 is 2.
Proof. If re is odd, then x2

re+1 ≡ −1 (mod pe) by Lemma 2.1, so the multiplicative order is 4. Suppose
that re is even. Note the relation

x2n+1 =
xn+1x2n

xn
− (−1)n, ∀n ∈ N∗.

We claim that p does not divide x re
2

. If it does, then pe | xpe−1 re
2

by Lemma 2.2, so re | pe−1 re
2 , or 2 | pe−1,

which is impossible. Taking n =
re
2

in the equation above yields

xre+1 ≡ −(−1)
re
2 (mod pe),

which is the desired result.
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