0 Some basics of p-adic valuation

Let F' be a field with a non-archimedean valuation v.
Lemma 0.1. For z,y,t € F such that v(k) > 0, we have min{v(tz + y), v(x)} = min{v(z),v(y)}.

Proof. If v(y) < v(x), then v(kz +y) = v(y + valuation > v(y)) = v(y), so both sides are equal to v(y).
If v(y) > v(z), then v(kz + y) > min{v(k) + v(x),v(y)} > v(z), so both sides are equal to v(z). O

Lemma 0.2. Suppose that chark # 2. Pick k € F such that v(k) > 0. Suppose that F contains a
square root vk + 2 of k + 2 and a square root vk — 2 of k — 2, then we have

. (i\/m; m> N
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Proof. The quantities 5 are the roots of

2 —kz?+1=0.

If v, (x) > 0, then we have v,(2* — kz? + 1) = v,(1 + (valuation > 0)) = 0, impossible. If v,(z) < 0, then we
have v, (2! — ka? 4+ 1) = v, (2* + (valuation > v,(z))) = 4v,(z) < 0, impossible. O

Now suppose that F' is of characteristic 0. We extend the p-adic valuation v, over Q to F' (which is
always possible thanks to https://math.stackexchange.com/questions/4535894).
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Lemma 0.3. If v,(x) > T then
p—

op(L+2) 1) = v(a) + L.

v ((f)x) =, ((f)) +ivy(z) = ivp(x) +1, 1<i<p—1
Up <<§) xp) = pop(x),

vp((1+2)P — 1) = v, ((?Dx + (valuation > 1 + vp(x))) =v(z) + 1.

Proof. We have

and

SO

O

Lemma 0.4. Let d € Z, and suppose that p is an odd prime such that p { d. Suppose that F' contains
a square root v/d of d, then we have vp((@(\/a)x) € Z; in other words, the p-adic valuation of a nonzero
element in Q(v/d) (as a subfield of F) is an integer.

Proof. WLOG suppose that F' is complete (if not, take the completion), then Q, C F. The result is
obvious if d is a quadratic residue modulo p (which means that Vd e Qp). If not, then by the uniqueness
of extending the p-adic valuation over Q, to an algebraic extension (see for example Theorem 4.8, p.131 of
Algebraic Number Theory by Neukirch), we have

1 1
vp(a +bVd) = ivp(Nme(\/E)/Qp(a +0Vd)) = 51},,((12 — b2d).

It suffices to show that vp(a2 — b%d) is even. WLOG suppose that a,b € Z, not being divisible by p at the
same time. If p | (a? — b%d), then a?~! = w-ldt = —pr-! (mod p), which implies p | a, b, a contradiction.
We obtain then that v,(a? — b?d) = 0. O

In the following sections, we will write p¢ | x for x € Q(V/d) if vy(z) > e. If p° | (z — y), we write
x = y (mod p°).


https://math.stackexchange.com/questions/4535894
http://www.math.toronto.edu/~ila/Neukirch_Algebraic_number_theory.pdf

1 Lucas sequences and entry point modulo p

Let k > 3 be a fixed integer. Consider the sequence in Q(vk — 2) (an extension of Q that contains a
square root vk — 2) defined by

x9g=0, z1=1 xpro=Vk—2xp41+z,, VneN

(z,,) is an increasing sequence, so z, > 0 for n € N*. We have

2 n i n—1 —3
2; (2i+1)<k+2> (k—2)"
n odd;

Ty = on—1 ’ (1)

and in Q(vk — 2,k + 2) we have
<\/W+ \/m)"_ (W—m)"

2 2

Ty =

vk +2

We will always suppose henthforth that p is an odd prime such that p{ k — 2, and we extend the p-adic

valuation v, over Q to Q(vk — 2) and Q(vk — 2, Vk + 2).
Lemma 1.1. For n,m € N, we have min{vy,(zn), vp(2m)} = vp(Tged(n,m))-
Proof. By Lemma 0.1, we have
Tl = V=22, + Tm 1= min{ vy (Tm+1), Vp(2m)} = min{vy(Tm,), vp(Tm-1)}, ¥Ym e N*,

so min{vy(Tm), Vp(Tm—1)} = - -+ = min{v,(z1), vp(zo)} = 0, which means that v,(z,) =0 or vp(2m—1) =0
for all m € N*. Now WLOG suppose that n > m > 1. By induction we have

Ty = TmTn—m+1 + Tm—1Tn—m,
so Lemma 0.1 gives
min{v,(zn), vp(¥m)} = min{vy (Tm), vp(Tm-1) + Vp(Tn-m)}-
But vy (zy) = 0 or vp(zm—1) = 0, so we obtain
min{v, (zn), vp(Tm)} = min{vy(zm), vp(Tn—m)}-
After finitely many steps, we obtain

min{vp(xn)v U;D(xm)} = min{vp(xgcd(n,m))a U;D(:CO)} = 'U;D(:Egcd(n,m))'

In particular, if n | m for n,m € N, then vp(zm) > vp(zn).
By (1), vp(zy,,) is always a nonnegative integer for n € N*. Define

r:=min{n € N* : v,(z,) > 1}.

By Lemma 1.1, we have p | z,, < r | n. The quantity r is called the entry point of (x,) modulo p. The
following property shows that r is well-defined.
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Proof. Since p is odd, (1) gives
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(p - 1>(k: +2)i(k—2)" " - f(k +2)i(k —2)"

1 p—1 p—1
Tp—1 _ =0 2i+1 _ =0 _ (k B 2)T - (k + 2) 2 (modp)
k—2 2p—2 - op—2 - 2 ,
p_1
n . p—1 .
k+2)(k—2)= "
i—0(2i+1>( o ' p=1
Tp = T =(k+2)7 (modp).
O
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- )y
roposition 1.2. If p{ (k% — 4), then r | — if and only if T =1.

VkE—=2+Vk+2 5 = Vk—2—Vk+2 n

Proof. We calculate Tp1Tpi modulo p. Write a =

2 2
Q(Vk —2,Vk + 2), then
O C e A0 | C e A W et 0 | C At )
B T k+2 k+2
p—1
2
p p=1_ p—1
. Nk+2)'(k=2)= " —(-1) 2
a? + 8P — (~1)"T VE—2 - ;(2)
B k+2 B k+2
k—2)"7 — (~1)"7
= I<:—2( )k+2( ) (mod p),
—(k—2 —(k—2
S0 p | xp—1xptr if and only if <()> =1.1If <H> = 1, then we have p | zp-1 or p | p—1
2 2 p p 2 2

(since v, (xprl) ,Up (Jc%> € N), but r | (p— (k2p_4>), so r | - (; ;4). If <_(k_2)) = —1, then

p
E%—4
- (5

O
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p divides neither zp—1 nor xp-1, so 1
2 2

Conclusion. Let p be an odd prime such that p (k? — 4).

0 () ()

k-4 k%4
= (5) e (5
Since r divides 3 = 5 , which is odd, » must be odd.

k? —4
Since r has the same number of factors 2 as p — ( ) =p-— <>, which is a mulitple of 4,
p p

r must be divisible by 4.



o (22 (57) -

k? —4 -1
Since r has the same number of factors 2 as p — ( ) =p+ <>, which is congruent to 2
p

modulo 4, we must have r = 2 (mod 4).

@) (_(kp‘Z)) _1 (’“p”) _1 (;) —1(p=1,7(mod8)).

11 2
Conjecture: The relative densities of r odd, 7 = 2 (mod 4) and 4 | r is respectively 56 and 3
—(k—2)> <k+2> <2)
5) | ——= | =1, =1,(-)=-1(p=3,5(mod8)).
o (75 . 2) = —1 (=55 (mods)
R -1
() 1
Since r divides 2 P = 5 P , which is not divisible by 4, r cannot be divisible by 4.
1 1
Conjecture: The relative densities of r odd and r = 2 (mod 4) is respectively 3 and ok
L k+2 .
Note that if is a square, the last case cannot happen. Under the conjectures,
k+2 1 1 1 1
o1t 2F is a square (cases (i)—(iv) with densities OVLVL 1), the relative densities of the three
1 1 1 1 1 7 1 1 1 1 1 7
casesarele—i—zxo—i—zxo—&—ixé = 50 ZXO+ZXO+ZX1+ZX6 = ﬂand
1><O+1><1+1><0+1><2— >
4 4 4 473 12
. . L. 111 . -
o If k + 2 is a square (cases (iii)—(v) with densities VL Z)’ the relative densities of the three cases
1><0+1><1—i-1><1 11><1+1><1—|—1><1 2 d1><0+1><2+1><0 1
re — X - - X o=, = - X—-+-x-=—and = X -+-x0=-.
ey 176172762 1761727 3% 173717776
. . .11 1 11 . -
e In other cases (cases (i)—(v) with densities 118 g), the relative densities of the three cases
1><1—|—1><O+1><0—|—1>< +1x1—11><0+1><0+1><1+1><1+1><1—1 d
ey 1 1 876 8 2 314 1 1 8 6 8 2 3™
1><0+1><1+1><0+1><2+1><0—1
4 4 4 83 8 3

We will explain in the next section the reason why we are interested in the three cases r odd, r =
2 (mod4) and 4 | r.



2 Number of zeros in a period modulo p°

Suppose that p¢ | zs for some s € N. By recurrence we have
Tpis = Tsyp12y (mod p®) (2)
(the expression makes sense by Lemma 0.4), so we are interested in xsy1 mod p®. We have:
Lemma 2.1. 22, = (—1)* (mod p®).

Proof. The result is obvious for s = 0. For s > 0, note that p° | z, implies that 2,11 = 251 (mod p®).

Set A = ( kf? 1>, then A™ = (x”H n ) for n € N*, so

0 Ty Tp—1
A® = xg4115 (mod p®).
Taking the determinant of both sides yields
22 = det(A)* = (—1)* (mod p®).

Lemma 2.2. If v,(z,) > 0 for some n € N*, then v,(zp,) = vp(z,) + 1.

Vk—2+Vk+2 Vk—2—-Vk+2
Proof. Write a = ;_ + , B = 5 i in Q(vk —2,vk +2), then by Lemma 0.2

i (522 (&) ) -

so we have v, ((g) - 1) > vp(zy,) > 1. By Lemma 0.3 we have

()l )

which means that v, (xp,) = vp(zy) + 1. -

we have

Let
re :=min{n € N* : v,(z,) > e};

since ry is well-defined, the quantity is well-defined thanks to the lemma above. By Lemma 1.1, we have
p¢ | Ty & 1o | n. By (2), the multiplicative order of z,, 41 modulo p¢ representes the number of zeros in a
period of Lucas sequence modulo p¢. We have:

Proposition 2.1.

o If . is odd, then the multiplicative order of x, 41 is 4;

o If r. = 2 (mod4), then the multiplicative order of x, 41 is 1;
e If 4| r., then the multiplicative order of x, 1 is 2.

Proof. If r. is odd, then z%e_H = —1(mod p®) by Lemma 2.1, so the multiplicative order is 4. Suppose
that r. is even. Note the relation

Tn4+1T2n

Topyl = ——— — (_1)717 Vn € N*,
Ln
We claim that p does not divide xre. If it does, then p® | #e-1ze by Lemma 2.2, so 7. | p*~ %, or 2 | p*~ 1,
T
which is impossible. Taking n = 56 in the equation above yields
Zro41 = —(~1)F (modpe),
which is the desired result. O
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