0 Some basics of p-adic valuation

Let F be a field with a non-archimedean valuation v.
Lemma 0.1. For $x, y, t \in F$ such that $v(k) \geq 0$, we have $\min \{v(t x+y), v(x)\}=\min \{v(x), v(y)\}$.
Proof. If $v(y)<v(x)$, then $v(k x+y)=v(y+$ valuation $>v(y))=v(y)$, so both sides are equal to $v(y)$. If $v(y) \geq v(x)$, then $v(k x+y) \geq \min \{v(k)+v(x), v(y)\} \geq v(x)$, so both sides are equal to $v(x)$.

Lemma 0.2. Suppose that char $k \neq 2$. Pick $k \in F$ such that $v(k) \geq 0$. Suppose that F contains a square root $\sqrt{k+2}$ of $k+2$ and a square root $\sqrt{k-2}$ of $k-2$, then we have

$$
v_{p}\left(\frac{ \pm \sqrt{k+2} \pm \sqrt{k-2}}{2}\right)=0
$$

Proof. The quantities $\frac{ \pm \sqrt{k+2} \pm \sqrt{k-2}}{2}$ are the roots of

$$
x^{4}-k x^{2}+1=0 .
$$

If $v_{p}(x)>0$, then we have $v_{p}\left(x^{4}-k x^{2}+1\right)=v_{p}(1+($ valuation $>0))=0$, impossible. If $v_{p}(x)<0$, then we have $v_{p}\left(x^{4}-k x^{2}+1\right)=v_{p}\left(x^{4}+\left(\right.\right.$ valuation $\left.\left.>v_{p}\left(x^{4}\right)\right)\right)=4 v_{p}(x)<0$, impossible.

Now suppose that F is of characteristic 0 . We extend the p-adic valuation v_{p} over \mathbb{Q} to F (which is always possible thanks to https://math.stackexchange.com/questions/4535894).

Lemma 0.3. If $v_{p}(x)>\frac{1}{p-1}$, then

$$
v_{p}\left((1+x)^{p}-1\right)=v_{p}(x)+1
$$

Proof. We have

$$
v_{p}\left(\binom{p}{i} x^{i}\right)=v_{p}\left(\binom{p}{i}\right)+i v_{p}(x)=i v_{p}(x)+1, \quad 1 \leq i \leq p-1
$$

and

$$
v_{p}\left(\binom{p}{p} x^{p}\right)=p v_{p}(x)
$$

so

$$
v_{p}\left((1+x)^{p}-1\right)=v_{p}\left(\binom{p}{1} x+\left(\text { valuation }>1+v_{p}(x)\right)\right)=v(x)+1
$$

Lemma 0.4. Let $d \in \mathbb{Z}$, and suppose that p is an odd prime such that $p \nmid d$. Suppose that F contains a square root \sqrt{d} of d, then we have $v_{p}\left(\mathbb{Q}(\sqrt{d})^{\times}\right) \in \mathbb{Z}$; in other words, the p-adic valuation of a nonzero element in $\mathbb{Q}(\sqrt{d})$ (as a subfield of $F)$ is an integer.

Proof. WLOG suppose that F is complete (if not, take the completion), then $\mathbb{Q}_{p} \subset F$. The result is obvious if d is a quadratic residue modulo p (which means that $\sqrt{d} \in \mathbb{Q}_{p}$). If not, then by the uniqueness of extending the p-adic valuation over \mathbb{Q}_{p} to an algebraic extension (see for example Theorem 4.8, p. 131 of Algebraic Number Theory by Neukirch), we have

$$
v_{p}(a+b \sqrt{d})=\frac{1}{2} v_{p}\left(\operatorname{Nm}_{\mathbb{Q}_{p}(\sqrt{d}) / \mathbb{Q}_{p}}(a+b \sqrt{d})\right)=\frac{1}{2} v_{p}\left(a^{2}-b^{2} d\right) .
$$

It suffices to show that $v_{p}\left(a^{2}-b^{2} d\right)$ is even. WLOG suppose that $a, b \in \mathbb{Z}$, not being divisible by p at the same time. If $p \mid\left(a^{2}-b^{2} d\right)$, then $a^{p-1} \equiv b^{p-1} d^{\frac{p-1}{2}} \equiv-b^{p-1}(\bmod p)$, which implies $p \mid a, b$, a contradiction. We obtain then that $v_{p}\left(a^{2}-b^{2} d\right)=0$.

In the following sections, we will write $p^{e} \mid x$ for $x \in \mathbb{Q}(\sqrt{d})$ if $v_{p}(x) \geq e$. If $p^{e} \mid(x-y)$, we write $x \equiv y\left(\bmod p^{e}\right)$.

1 Lucas sequences and entry point modulo p

Let $k \geq 3$ be a fixed integer. Consider the sequence in $\mathbb{Q}(\sqrt{k-2})$ (an extension of \mathbb{Q} that contains a square root $\sqrt{k-2}$) defined by

$$
x_{0}=0, \quad x_{1}=1, \quad x_{n+2}=\sqrt{k-2} x_{n+1}+x_{n}, \quad \forall n \in \mathbb{N} .
$$

$\left(x_{n}\right)$ is an increasing sequence, so $x_{n}>0$ for $n \in \mathbb{N}^{*}$. We have

$$
x_{n}= \begin{cases}\frac{\sum_{i=0}^{\frac{n-1}{2}}\binom{n}{2 i+1}(k+2)^{i}(k-2)^{\frac{n-1}{2}-i}}{2^{n-1}}, & n \text { odd } \tag{1}\\ \sqrt{\sum_{i=0}^{\frac{n}{2}-1}\binom{n}{2 i+1}(k+2)^{i}(k-2)^{\frac{n}{2}-1-i}} \\ 2^{n-1} & n \text { even }\end{cases}
$$

and in $\mathbb{Q}(\sqrt{k-2}, \sqrt{k+2})$ we have

$$
x_{n}=\frac{\left(\frac{\sqrt{k-2}+\sqrt{k+2}}{2}\right)^{n}-\left(\frac{\sqrt{k-2}-\sqrt{k+2}}{2}\right)^{n}}{\sqrt{k+2}} .
$$

We will always suppose henthforth that p is an odd prime such that $p \nmid k-2$, and we extend the p-adic valuation v_{p} over \mathbb{Q} to $\mathbb{Q}(\sqrt{k-2})$ and $\mathbb{Q}(\sqrt{k-2}, \sqrt{k+2})$.

Lemma 1.1. For $n, m \in \mathbb{N}$, we have $\min \left\{v_{p}\left(x_{n}\right), v_{p}\left(x_{m}\right)\right\}=v_{p}\left(x_{\operatorname{gcd}(n, m)}\right)$.
Proof. By Lemma 0.1, we have

$$
x_{m+1}=\sqrt{k-2} x_{m}+x_{m-1} \Rightarrow \min \left\{v_{p}\left(x_{m+1}\right), v_{p}\left(x_{m}\right)\right\}=\min \left\{v_{p}\left(x_{m}\right), v_{p}\left(x_{m-1}\right)\right\}, \quad \forall m \in \mathbb{N}^{*}
$$

so $\min \left\{v_{p}\left(x_{m}\right), v_{p}\left(x_{m-1}\right)\right\}=\cdots=\min \left\{v_{p}\left(x_{1}\right), v_{p}\left(x_{0}\right)\right\}=0$, which means that $v_{p}\left(x_{m}\right)=0$ or $v_{p}\left(x_{m-1}\right)=0$ for all $m \in \mathbb{N}^{*}$. Now WLOG suppose that $n \geq m \geq 1$. By induction we have

$$
x_{n}=x_{m} x_{n-m+1}+x_{m-1} x_{n-m},
$$

so Lemma 0.1 gives

$$
\min \left\{v_{p}\left(x_{n}\right), v_{p}\left(x_{m}\right)\right\}=\min \left\{v_{p}\left(x_{m}\right), v_{p}\left(x_{m-1}\right)+v_{p}\left(x_{n-m}\right)\right\} .
$$

But $v_{p}\left(x_{m}\right)=0$ or $v_{p}\left(x_{m-1}\right)=0$, so we obtain

$$
\min \left\{v_{p}\left(x_{n}\right), v_{p}\left(x_{m}\right)\right\}=\min \left\{v_{p}\left(x_{m}\right), v_{p}\left(x_{n-m}\right)\right\}
$$

After finitely many steps, we obtain

$$
\min \left\{v_{p}\left(x_{n}\right), v_{p}\left(x_{m}\right)\right\}=\min \left\{v_{p}\left(x_{\operatorname{gcd}(n, m)}\right), v_{p}\left(x_{0}\right)\right\}=v_{p}\left(x_{\operatorname{gcd}(n, m)}\right)
$$

In particular, if $n \mid m$ for $n, m \in \mathbb{N}$, then $v_{p}\left(x_{m}\right) \geq v_{p}\left(x_{n}\right)$.
By (1), $v_{p}\left(x_{n}\right)$ is always a nonnegative integer for $n \in \mathbb{N}^{*}$. Define

$$
r:=\min \left\{n \in \mathbb{N}^{*}: v_{p}\left(x_{n}\right) \geq 1\right\} .
$$

By Lemma 1.1, we have $p\left|x_{n} \Leftrightarrow r\right| n$. The quantity r is called the entry point of $\left(x_{n}\right)$ modulo p. The following property shows that r is well-defined.

Proposition 1.1. We have $p \left\lvert\, x_{p-\left(\frac{k^{2}-4}{p}\right)}\right.$, so $r \left\lvert\,\left(p-\left(\frac{k^{2}-4}{p}\right)\right)\right.$.
Proof. Since p is odd, (1) gives

$$
\begin{aligned}
& \frac{x_{p+1}}{\sqrt{k-2}}=\frac{\sum_{i=0}^{\frac{p-1}{2}}\binom{p+1}{2 i+1}(k+2)^{i}(k-2)^{\frac{p-1}{2}-i}}{2^{p}} \equiv \frac{(k-2)^{\frac{p-1}{2}}+(k+2)^{\frac{p-1}{2}}}{2}(\bmod p) ; \\
& \frac{x_{p-1}}{\sqrt{k-2}}=\frac{\sum_{i=0}^{\frac{p-3}{2}}\binom{p-1}{2 i+1}(k+2)^{i}(k-2)^{\frac{p-3}{2}-i}}{2^{p-2}} \equiv \frac{-\sum_{i=0}^{\frac{p-3}{2}}(k+2)^{i}(k-2)^{\frac{p-3}{2}-i}}{2^{p-2}} \equiv \frac{(k-2)^{\frac{p-1}{2}}-(k+2)^{\frac{p-1}{2}}}{2}(\bmod p) ; \\
& x_{p}= \frac{\sum_{i=0}^{\frac{p-1}{2}}\binom{n}{2 i+1}(k+2)^{i}(k-2)^{\frac{p-1}{2}-i}}{2^{p-1}} \equiv(k+2)^{\frac{p-1}{2}(\bmod p) .}
\end{aligned}
$$

Proposition 1.2. If $p \nmid\left(k^{2}-4\right)$, then $r \left\lvert\, \frac{p-\left(\frac{k^{2}-4}{p}\right)}{2}\right.$ if and only if $\left(\frac{-(k-2)}{p}\right)=1$.
Proof. We calculate $x_{\frac{p-1}{2}} x_{\frac{p+1}{2}}$ modulo p. Write $\alpha=\frac{\sqrt{k-2}+\sqrt{k+2}}{2}, \beta=\frac{\sqrt{k-2}-\sqrt{k+2}}{2}$ in $\mathbb{Q}(\sqrt{k-2}, \sqrt{k+2})$, then

$$
\begin{aligned}
x_{\frac{p-1}{2}} x_{\frac{p+1}{2}} & =\frac{\left(\alpha^{\frac{p-1}{2}}-\beta^{\frac{p-1}{2}}\right)\left(\alpha^{\frac{p+1}{2}}-\beta^{\frac{p+1}{2}}\right)}{k+2}=\frac{\left(\alpha^{\frac{p-1}{2}}-\beta^{\frac{p-1}{2}}\right)\left(\alpha^{\frac{p+1}{2}}-\beta^{\frac{p+1}{2}}\right)}{k+2} \\
& =\frac{\alpha^{p}+\beta^{p}-(-1)^{\frac{p-1}{2}} \sqrt{k-2}}{k+2}=\sqrt{k-2} \frac{\sum_{i=0}^{\frac{p-1}{2}}\binom{p}{2 i}(k+2)^{i}(k-2)^{\frac{p-1}{2}-i}-(-1)^{\frac{p-1}{2}}}{k+2} \\
& \equiv \sqrt{k-2} \frac{(k-2)^{\frac{p-1}{2}}-(-1)^{\frac{p-1}{2}}}{k+2}(\bmod p),
\end{aligned}
$$

so $p \left\lvert\, x_{\frac{p-1}{2}} x_{\frac{p+1}{2}}\right.$ if and only if $\left(\frac{-(k-2)}{p}\right)=1$. If $\left(\frac{-(k-2)}{p}\right)=1$, then we have $p \left\lvert\, x_{\frac{p-1}{2}}\right.$ or $p \left\lvert\, x_{\frac{p-1}{2}}\right.$ (since $\left.v_{p}\left(x_{\frac{p-1}{2}}\right), v_{p}\left(x_{\frac{p+1}{2}}\right) \in \mathbb{N}\right)$, but $r \left\lvert\,\left(p-\left(\frac{k^{2}-4}{p}\right)\right)\right.$, so $r \left\lvert\, \frac{p-\left(\frac{k^{2}-4}{p}\right)}{2}\right.$. If $\left(\frac{-(k-2)}{p}\right)=-1$, then p divides neither $x_{\frac{p-1}{2}}$ nor $x_{\frac{p-1}{2}}$, so $r \nmid \frac{p-\left(\frac{k^{2}-4}{p}\right)}{2}$.

Conclusion. Let p be an odd prime such that $p \nmid\left(k^{2}-4\right)$.
(1) $\left(\frac{-(k-2)}{p}\right)=1,\left(\frac{k+2}{p}\right)=-1$.

Since r divides $\frac{p-\left(\frac{k^{2}-4}{p}\right)}{2}=\frac{p+\left(\frac{k^{2}-4}{p}\right)}{2}$, which is odd, r must be odd.
(2) $\left(\frac{-(k-2)}{p}\right)=-1,\left(\frac{k+2}{p}\right)=-1$.

Since r has the same number of factors 2 as $p-\left(\frac{k^{2}-4}{p}\right)=p-\left(\frac{-1}{p}\right)$, which is a mulitple of 4 , r must be divisible by 4 .
(3) $\left(\frac{-(k-2)}{p}\right)=-1,\left(\frac{k+2}{p}\right)=1$.

Since r has the same number of factors 2 as $p-\left(\frac{k^{2}-4}{p}\right)=p+\left(\frac{-1}{p}\right)$, which is congruent to 2 modulo 4 , we must have $r \equiv 2(\bmod 4)$.
(4) $\left(\frac{-(k-2)}{p}\right)=1,\left(\frac{k+2}{p}\right)=1,\left(\frac{2}{p}\right)=1(p \equiv 1,7(\bmod 8))$.

Conjecture: The relative densities of r odd, $r \equiv 2(\bmod 4)$ and $4 \mid r$ is respectively $\frac{1}{6}, \frac{1}{6}$ and $\frac{2}{3}$.
(5) $\left(\frac{-(k-2)}{p}\right)=1,\left(\frac{k+2}{p}\right)=1,\left(\frac{2}{p}\right)=-1(p \equiv 3,5(\bmod 8))$.

Since r divides $\frac{p-\left(\frac{k^{2}-4}{p}\right)}{2}=\frac{p-\left(\frac{-1}{p}\right)}{2}$, which is not divisible by $4, r$ cannot be divisible by 4 .
Conjecture: The relative densities of r odd and $r \equiv 2(\bmod 4)$ is respectively $\frac{1}{2}$ and $\frac{1}{2}$.
Note that if $\frac{k+2}{2}$ is a square, the last case cannot happen. Under the conjectures,

- If $\frac{k+2}{2}$ is a square (cases (i)-(iv) with densities $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$), the relative densities of the three cases are $\frac{1}{4} \times 1+\frac{1}{4} \times 0+\frac{1}{4} \times 0+\frac{1}{4} \times \frac{1}{6}=\frac{7}{24}, \frac{1}{4} \times 0+\frac{1}{4} \times 0+\frac{1}{4} \times 1+\frac{1}{4} \times \frac{1}{6}=\frac{7}{24}$ and $\frac{1}{4} \times 0+\frac{1}{4} \times 1+\frac{1}{4} \times 0+\frac{1}{4} \times \frac{2}{3}=\frac{5}{12}$.
- If $k+2$ is a square (cases (iii) -(v) with densities $\frac{1}{2}, \frac{1}{4}, \frac{1}{4}$), the relative densities of the three cases are $\frac{1}{2} \times 0+\frac{1}{4} \times \frac{1}{6}+\frac{1}{4} \times \frac{1}{2}=\frac{1}{6}, \frac{1}{2} \times 1+\frac{1}{4} \times \frac{1}{6}+\frac{1}{4} \times \frac{1}{2}=\frac{2}{3}$ and $\frac{1}{2} \times 0+\frac{1}{4} \times \frac{2}{3}+\frac{1}{4} \times 0=\frac{1}{6}$.
- In other cases (cases (i) $-\left(\mathrm{v}\right.$) with densities $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}$), the relative densities of the three cases are $\frac{1}{4} \times 1+\frac{1}{4} \times 0+\frac{1}{4} \times 0+\frac{1}{8} \times \frac{1}{6}+\frac{1}{8} \times \frac{1}{2}=\frac{1}{3}, \frac{1}{4} \times 0+\frac{1}{4} \times 0+\frac{1}{4} \times 1+\frac{1}{8} \times \frac{1}{6}+\frac{1}{8} \times \frac{1}{2}=\frac{1}{3}$ and $\frac{1}{4} \times 0+\frac{1}{4} \times 1+\frac{1}{4} \times 0+\frac{1}{8} \times \frac{2}{3}+\frac{1}{8} \times 0=\frac{1}{3}$.
We will explain in the next section the reason why we are interested in the three cases r odd, $r \equiv$ $2(\bmod 4)$ and $4 \mid r$.

2 Number of zeros in a period modulo p^{e}

Suppose that $p^{e} \mid x_{s}$ for some $s \in \mathbb{N}$. By recurrence we have

$$
\begin{equation*}
x_{n+s} \equiv x_{s+1} x_{n}\left(\bmod p^{e}\right) \tag{2}
\end{equation*}
$$

(the expression makes sense by Lemma 0.4), so we are interested in $x_{s+1} \bmod p^{e}$. We have:
Lemma 2.1. $x_{s+1}^{2} \equiv(-1)^{s}\left(\bmod p^{e}\right)$.
Proof. The result is obvious for $s=0$. For $s>0$, note that $p^{e} \mid x_{s}$ implies that $x_{s+1} \equiv x_{s-1}\left(\bmod p^{e}\right)$. Set $A=\left(\begin{array}{cc}\sqrt{k-2} & 1 \\ 1 & 0\end{array}\right)$, then $A^{n}=\left(\begin{array}{cc}x_{n+1} & x_{n} \\ x_{n} & x_{n-1}\end{array}\right)$ for $n \in \mathbb{N}^{*}$, so

$$
A^{s} \equiv x_{s+1} I_{2}\left(\bmod p^{e}\right)
$$

Taking the determinant of both sides yields

$$
x_{s+1}^{2} \equiv \operatorname{det}(A)^{s}=(-1)^{s}\left(\bmod p^{e}\right)
$$

Lemma 2.2. If $v_{p}\left(x_{n}\right)>0$ for some $n \in \mathbb{N}^{*}$, then $v_{p}\left(x_{p n}\right)=v_{p}\left(x_{n}\right)+1$.
Proof. Write $\alpha=\frac{\sqrt{k-2}+\sqrt{k+2}}{2}, \beta=\frac{\sqrt{k-2}-\sqrt{k+2}}{2}$ in $\mathbb{Q}(\sqrt{k-2}, \sqrt{k+2})$, then by Lemma 0.2 we have

$$
v_{p}\left(x_{n}\right)=v_{p}\left(\frac{\alpha^{n}-\beta^{n}}{\sqrt{k+2}}\right)=v_{p}\left(\left(\frac{\alpha}{\beta}\right)^{n}-1\right)-v_{p}(\sqrt{k+2})
$$

so we have $v_{p}\left(\left(\frac{\alpha}{\beta}\right)^{n}-1\right) \geq v_{p}\left(x_{n}\right) \geq 1$. By Lemma 0.3 we have

$$
v_{p}\left(\left(\frac{\alpha}{\beta}\right)^{n p}-1\right)=v_{p}\left(\left(\frac{\alpha}{\beta}\right)^{n}-1\right)+1
$$

which means that $v_{p}\left(x_{p n}\right)=v_{p}\left(x_{n}\right)+1$.
Let

$$
r_{e}:=\min \left\{n \in \mathbb{N}^{*}: v_{p}\left(x_{n}\right) \geq e\right\}
$$

since r_{1} is well-defined, the quantity is well-defined thanks to the lemma above. By Lemma 1.1, we have $p^{e}\left|x_{n} \Leftrightarrow r_{e}\right| n$. By (2), the multiplicative order of $x_{r_{e}+1}$ modulo p^{e} representes the number of zeros in a period of Lucas sequence modulo p^{e}. We have:

Proposition 2.1.

- If r_{e} is odd, then the multiplicative order of $x_{r_{e}+1}$ is 4 ;
- If $r_{e} \equiv 2(\bmod 4)$, then the multiplicative order of $x_{r_{e}+1}$ is 1 ;
- If $4 \mid r_{e}$, then the multiplicative order of $x_{r_{e}+1}$ is 2 .

Proof. If r_{e} is odd, then $x_{r_{e}+1}^{2} \equiv-1\left(\bmod p^{e}\right)$ by Lemma 2.1, so the multiplicative order is 4 . Suppose that r_{e} is even. Note the relation

$$
x_{2 n+1}=\frac{x_{n+1} x_{2 n}}{x_{n}}-(-1)^{n}, \quad \forall n \in \mathbb{N}^{*}
$$

We claim that p does not divide $x_{\frac{r_{e}}{2}}$. If it does, then $p^{e} \left\lvert\, x_{p^{e-1} \frac{r_{e}}{2}}\right.$ by Lemma 2.2 , so $r_{e} \left\lvert\, p^{e-1} \frac{r_{e}}{2}\right.$, or $2 \mid p^{e-1}$, which is impossible. Taking $n=\frac{r_{e}}{2}$ in the equation above yields

$$
x_{r_{e}+1} \equiv-(-1)^{\frac{r_{e}}{2}}\left(\bmod p^{e}\right)
$$

which is the desired result.

