OFFSET
1,2
COMMENTS
Conjecture: m is on this list iff m is an odd number all of whose factors are on this list or m is 2 or 4 times such an odd number.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Brennan Benfield and Michelle Manes, The Fibonacci Sequence is Normal Base 10, arXiv:2202.08986 [math.NT], 2022.
Brennan Benfield and Oliver Lippard, Connecting Zeros in Pisano Periods to Prime Factors of K-Fibonacci Numbers, arXiv:2407.20048 [math.NT], 2024.
M. Renault, Fibonacci sequence modulo m
MATHEMATICA
With[{s = {1}~Join~Table[Count[Drop[NestWhile[Append[#, Mod[Total@ Take[#, -2], n]] &, {1, 1}, If[Length@ # < 3, True, Take[#, -2] != {1, 1}] &], -2], 0], {n, 2, 400}]}, Position[s, 1][[All, 1]] ] (* Michael De Vlieger, Aug 08 2018 *)
PROG
(Haskell)
a053031 n = a053031_list !! (n-1)
a053031_list = filter ((== 1) . a001176) [1..]
-- Reinhard Zumkeller, Jan 16 2014
(PARI) entryp(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1], for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k
entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entryp(f[i, 1]^f[i, 2]), entryp(f[i, 1])*f[i, 1]^(f[i, 2]-1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<<max(f[1, 2]-2, 1)); lcm(v)
fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
is(n)=fibmod(entry(n)+1, n)==1 \\ Charles R Greathouse IV, Dec 14 2016
CROSSREFS
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
* and also A053032 U {2}
KEYWORD
nonn
AUTHOR
Henry Bottomley, Feb 23 2000
STATUS
approved