login
A053031
Numbers with 1 zero in Fibonacci numbers mod m.
21
1, 2, 4, 11, 19, 22, 29, 31, 38, 44, 58, 59, 62, 71, 76, 79, 101, 116, 118, 121, 124, 131, 139, 142, 151, 158, 179, 181, 191, 199, 202, 209, 211, 229, 236, 239, 242, 251, 262, 271, 278, 284, 302, 311, 316, 319, 331, 341, 349, 358, 359, 361, 362, 379, 382, 398
OFFSET
1,2
COMMENTS
Conjecture: m is on this list iff m is an odd number all of whose factors are on this list or m is 2 or 4 times such an odd number.
A001176(a(n)) = A128924(a(n),1) = 1. - Reinhard Zumkeller, Jan 16 2014
Also numbers n such that A001175(n) = A001177(n). - Daniel Suteu, Aug 08 2018
LINKS
Brennan Benfield and Michelle Manes, The Fibonacci Sequence is Normal Base 10, arXiv:2202.08986 [math.NT], 2022.
Brennan Benfield and Oliver Lippard, Connecting Zeros in Pisano Periods to Prime Factors of K-Fibonacci Numbers, arXiv:2407.20048 [math.NT], 2024.
MATHEMATICA
With[{s = {1}~Join~Table[Count[Drop[NestWhile[Append[#, Mod[Total@ Take[#, -2], n]] &, {1, 1}, If[Length@ # < 3, True, Take[#, -2] != {1, 1}] &], -2], 0], {n, 2, 400}]}, Position[s, 1][[All, 1]] ] (* Michael De Vlieger, Aug 08 2018 *)
PROG
(Haskell)
a053031 n = a053031_list !! (n-1)
a053031_list = filter ((== 1) . a001176) [1..]
-- Reinhard Zumkeller, Jan 16 2014
(PARI) entryp(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1], for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k
entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entryp(f[i, 1]^f[i, 2]), entryp(f[i, 1])*f[i, 1]^(f[i, 2]-1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<<max(f[1, 2]-2, 1)); lcm(v)
fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
is(n)=fibmod(entry(n)+1, n)==1 \\ Charles R Greathouse IV, Dec 14 2016
CROSSREFS
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | this seq | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}
Sequence in context: A056394 A056395 A288621 * A018674 A076518 A139785
KEYWORD
nonn
AUTHOR
Henry Bottomley, Feb 23 2000
STATUS
approved