login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309585 Numbers k with 4 zeros in a fundamental period of A000129 mod k. 12
5, 13, 25, 29, 37, 53, 61, 65, 101, 109, 125, 137, 145, 149, 157, 169, 173, 181, 185, 197, 229, 265, 269, 277, 293, 305, 317, 325, 349, 373, 377, 389, 397, 421, 461, 481, 505, 509, 521, 541, 545, 557, 569, 593, 613, 625, 653, 661, 677, 685, 689, 701, 709 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers k such that A214027(k) = 4.

Also numbers k such that A214028(k) is odd.

LINKS

Jianing Song, Table of n, a(n) for n = 1..1000

PROG

(PARI) for(k=1, 700, if(A214027(k)==4, print1(k, ", ")))

CROSSREFS

Cf. A000129, A214027, A214028.

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.

                             |   m=1    |   m=2    |   m=3

Primes p such that w(p) = 1  | A112860* | A309580  | A309586

Primes p such that w(p) = 2  | A053027  | A309581  | A309587

Primes p such that w(p) = 4  | A053028  | A261580  | A309588

Numbers k such that w(k) = 1 | A053031  | A309583  | A309591

Numbers k such that w(k) = 2 | A053030  | A309584  | A309592

Numbers k such that w(k) = 4 | A053029  | this seq | A309593

* and also A053032 U {2}

Sequence in context: A283750 A156679 A190618 * A004627 A066782 A094553

Adjacent sequences:  A309582 A309583 A309584 * A309586 A309587 A309588

KEYWORD

nonn

AUTHOR

Jianing Song, Aug 10 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 8 17:26 EDT 2021. Contains 343666 sequences. (Running on oeis4.)