login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309580
Primes p with 1 zero in a fundamental period of A000129 mod p.
19
2, 7, 23, 31, 41, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263, 271, 311, 313, 353, 359, 367, 383, 409, 431, 439, 457, 463, 479, 487, 503, 599, 607, 631, 647, 719, 727, 743, 751, 761, 809, 823, 839, 863, 887, 911, 919, 967, 983, 991, 1031, 1039, 1063, 1087, 1103, 1129, 1151, 1201, 1223, 1231, 1279
OFFSET
1,1
COMMENTS
Primes p such that A214027(p) = 1.
For p > 2, p is in this sequence if and only if A175181(p) == 2 (mod 4), and if and only if A214028(p) == 2 (mod 4). For a proof of the equivalence between A214027(p) = 1 and A214028(p) == 2 (mod 4), see Section 2 of my link below.
This sequence contains all primes congruent to 7 modulo 8. This corresponds to case (3) for k = 6 in the Conclusion of Section 1 of my link below.
Conjecturely, this sequence has density 7/24 in the primes. [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]
PROG
(PARI) forprime(p=2, 1300, if(A214027(p)==1, print1(p, ", ")))
CROSSREFS
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+----------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | this seq | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}
Sequence in context: A045381 A180537 A042145 * A186098 A040098 A045315
KEYWORD
nonn
AUTHOR
Jianing Song, Aug 10 2019
STATUS
approved