The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045315 Primes p such that x^8 = 2 has a solution mod p. 9
 2, 7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 257, 263, 271, 311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991, 1031, 1039 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Coincides with the sequence of "primes p such that x^16 = 2 has a solution mod p" for first 58 terms (and then diverges). Complement of A045316 relative to A000040. - Vincenzo Librandi, Sep 13 2012 REFERENCES A. Aigner, Kriterien zum 8. und 16. Potenzcharakter der Reste 2 und -2, Deutsche Math. 4 (1939), 44-52; FdM 65 - I (1939), 112. LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 H. Hasse, Der 2^n-te Potenzcharakter von 2 im Koerper der 2^n-ten Einheitswurzeln, Rend. Circ. Matem. Palermo (2), 7 (1958), 185-243. Franz Lemmermeyer, Bibliography on Reciprocity Laws A. L. Whiteman, The sixteenth power residue character of 2, Canad. J. Math. 6 (1954), 364-373; Zbl 55.27102. MATHEMATICA ok[p_] := Reduce[ Mod[x^8-2, p] == 0, x, Integers] =!= False; Select[ Prime[ Range[200] ], ok] (* Jean-François Alcover, Nov 28 2011 *) PROG (MAGMA) [p: p in PrimesUpTo(1100) | exists(t){x : x in ResidueClassRing(p) | x^8 eq 2}]; // Vincenzo Librandi, Sep 13 2012 (PARI) is(n)=isprime(n) && ispower(Mod(2, n), 8) \\ Charles R Greathouse IV, Feb 08 2017 CROSSREFS Cf. A000040, A001132, A040028, A040098, A045316. Sequence in context: A309580 A186098 A040098 * A072935 A049564 A072936 Adjacent sequences:  A045312 A045313 A045314 * A045316 A045317 A045318 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 10 22:35 EDT 2021. Contains 343780 sequences. (Running on oeis4.)