OFFSET
1,1
COMMENTS
This is the union of {3}, A003627 (primes congruent to 2 mod 3) and A014752 (primes of the form x^2+27y^2). By Thm. 4.15 of [Cox], p is of the form x^2+27y^2 if and only if p is congruent to 1 mod 3 and 2 is a cubic residue mod p. If p is not congruent to 1 mod 3, then every number is a cubic residue mod p, including 2. - Andrew V. Sutherland, Apr 26 2008
REFERENCES
David A. Cox, "Primes of the Form x^2+ny^2", 1998, John Wiley & Sons.
Kenneth Ireland and Michael Rosen, "A Classical Introduction to Modern Number Theory", second ed., 1990, Springer-Verlag.
LINKS
FORMULA
a(n) ~ (3/2) n log n. - Charles R Greathouse IV, Apr 06 2022
MATHEMATICA
f[p_] := Block[{k = 2}, While[k < p && Mod[k^3, p] != 2, k++ ]; If[k == p, 0, 1]]; Select[ Prime[ Range[100]], f[ # ] == 1 &] (* Robert G. Wilson v, Jul 26 2004 *)
PROG
(Magma) [ p: p in PrimesUpTo(433) | exists(t){x : x in ResidueClassRing(p) | x^3 eq 2} ]; // Klaus Brockhaus, Dec 02 2008
(PARI) select(p->ispower(Mod(2, p), 3), primes(100)) \\ Charles R Greathouse IV, Apr 28 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Typo corrected to A014752 by Paul Landon (paullandon(AT)hotmail.com), Jan 25 2010
STATUS
approved