login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A040034
Primes p such that x^3 = 2 has no solution mod p.
5
7, 13, 19, 37, 61, 67, 73, 79, 97, 103, 139, 151, 163, 181, 193, 199, 211, 241, 271, 313, 331, 337, 349, 367, 373, 379, 409, 421, 463, 487, 523, 541, 547, 571, 577, 607, 613, 619, 631, 661, 673, 709, 751, 757, 769, 787, 823, 829, 853, 859, 877, 883, 907, 937
OFFSET
1,1
COMMENTS
Primes represented by the quadratic form 4x^2 + 2xy + 7y^2, whose discriminant is -108. - T. D. Noe, May 17 2005
Complement of A040028 relative to A000040. - Vincenzo Librandi, Sep 17 2012
LINKS
Steven R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
Bishnu Paudel and Chris Pinner, The integer group determinants for the abelian groups of order 18, arXiv:2412.10638 [math.NT], 2024. See p. 3.
EXAMPLE
A cube modulo 7 can only be 0, 1 or 6, but not 2, hence the prime 7 is in the sequence.
Because x^3 = 2 mod 11 when x = 7 mod 11, the prime 11 is not in the sequence.
MATHEMATICA
insolublePrimeQ[p_]:= Reduce[Mod[x^3 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[200]], insolublePrimeQ] (* Vincenzo Librandi Sep 17 2012 *)
PROG
(Magma) [ p: p in PrimesUpTo(937) | forall(t){x : x in ResidueClassRing(p) | x^3 ne 2} ]; // Klaus Brockhaus, Dec 05 2008
(PARI) forprime(p=2, 10^3, if(#polrootsmod(x^3-2, p)==0, print1(p, ", "))) \\ Joerg Arndt, Jul 16 2015
CROSSREFS
Sequence in context: A059262 A059640 A059643 * A176229 A266268 A110074
KEYWORD
nonn,easy,changed
EXTENSIONS
More terms from Klaus Brockhaus, Dec 05 2008
STATUS
approved