login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A040037
Continued fraction for sqrt(44).
3
6, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1
OFFSET
0,1
FORMULA
From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2) = 1, a(4) = 2, a(2^e) = 12 for e >= 3, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 5/2^(3*s-1) + 1/4^s). (End)
EXAMPLE
6.633249580710799698229865473... = 6 + 1/(1 + 1/(1 + 1/(1 + 1/(2 + ...)))). - Harry J. Smith, Jun 05 2009
MAPLE
Digits := 100: convert(evalf(sqrt(N)), confrac, 90, 'cvgts'):
MATHEMATICA
ContinuedFraction[Sqrt[44], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *)
PadRight[{6}, 80, {12, 1, 1, 1, 2, 1, 1, 1}] (* Harvey P. Dale, Apr 02 2013 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 14000); x=contfrac(sqrt(44)); for (n=0, 20000, write("b040037.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 05 2009
CROSSREFS
Cf. A010498 (decimal expansion).
Sequence in context: A293901 A324891 A260340 * A344877 A356156 A356157
KEYWORD
nonn,cofr,easy,mult
STATUS
approved