login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for sqrt(44).
3

%I #31 Nov 12 2023 06:06:00

%S 6,1,1,1,2,1,1,1,12,1,1,1,2,1,1,1,12,1,1,1,2,1,1,1,12,1,1,1,2,1,1,1,

%T 12,1,1,1,2,1,1,1,12,1,1,1,2,1,1,1,12,1,1,1,2,1,1,1,12,1,1,1,2,1,1,1,

%U 12,1,1,1,2,1,1,1,12,1,1,1,2,1

%N Continued fraction for sqrt(44).

%H Harry J. Smith, <a href="/A040037/b040037.txt">Table of n, a(n) for n = 0..20000</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>.

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,1).

%F From _Amiram Eldar_, Nov 12 2023: (Start)

%F Multiplicative with a(2) = 1, a(4) = 2, a(2^e) = 12 for e >= 3, and a(p^e) = 1 for an odd prime p.

%F Dirichlet g.f.: zeta(s) * (1 + 5/2^(3*s-1) + 1/4^s). (End)

%e 6.633249580710799698229865473... = 6 + 1/(1 + 1/(1 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, Jun 05 2009

%p Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):

%t ContinuedFraction[Sqrt[44],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 06 2011 *)

%t PadRight[{6},80,{12,1,1,1,2,1,1,1}] (* _Harvey P. Dale_, Apr 02 2013 *)

%o (PARI) { allocatemem(932245000); default(realprecision, 14000); x=contfrac(sqrt(44)); for (n=0, 20000, write("b040037.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 05 2009

%Y Cf. A010498 (decimal expansion).

%K nonn,cofr,easy,mult

%O 0,1

%A _N. J. A. Sloane_