login
A040036
Primes p such that x^3 = 3 has a solution mod p.
2
2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 61, 67, 71, 73, 83, 89, 101, 103, 107, 113, 131, 137, 149, 151, 167, 173, 179, 191, 193, 197, 227, 233, 239, 251, 257, 263, 269, 271, 281, 293, 307, 311, 317, 347, 353, 359, 367, 383, 389, 401, 419, 431, 439, 443, 449, 461, 467, 479, 491, 499
OFFSET
1,1
COMMENTS
Complement of A040038 relative to A000040. - Vincenzo Librandi, Sep 13 2012
Being a cube mod p is a necessary condition for 3 to be a 9th power mod p. See Williams link pp. 1, 8 (warning: term 271 is missed). - Michel Marcus, Nov 12 2017
LINKS
Kenneth S. Williams, 3 as a Ninth Power (mod p), Math. Scand. Vol 35 (1974), 309-317.
MAPLE
select(p -> isprime(p) and numtheory:-mroot(3, 3, p) <> FAIL, [2, seq(i, i=3..1000, 2)]); # Robert Israel, Nov 12 2017
MATHEMATICA
ok [p_]:=Reduce[Mod[x^3 - 3, p] == 0, x, Integers] =!= False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 11 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(450) | exists(t){x : x in ResidueClassRing(p) | x^3 eq 3}]; // Vincenzo Librandi, Sep 11 2012
(PARI) isok(p) = isprime(p) && ispower(Mod(3, p), 3); \\ Michel Marcus, Nov 12 2017
CROSSREFS
Cf. A000040, A040038. Contains A003627.
Sequence in context: A098058 A040054 A093503 * A040078 A045309 A103664
KEYWORD
nonn,easy
STATUS
approved