|
|
A045309
|
|
Primes congruent to {0, 2} mod 3.
|
|
16
|
|
|
2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also, primes p such that the equation x^3 == y (mod p) has a unique solution x for every choice of y. - Klaus Brockhaus, Mar 02 2001; Michel Drouzy (DrouzyM(AT)noos.fr), Oct 28 2001
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
Select[Prime[Range[150]], MemberQ[{0, 2}, Mod[#, 3]]&] (* Harvey P. Dale, Jun 14 2011 *)
|
|
PROG
|
(Magma) [ p: p in PrimesUpTo(1000) | #[ x: x in ResidueClassRing(p) | x^3 eq 2 ] eq 1 ]; // Klaus Brockhaus, Apr 11 2009
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|