

A045309


Primes congruent to {0, 2} mod 3.


16



2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Also, primes p such that the equation x^3 == y (mod p) has a unique solution x for every choice of y.  Klaus Brockhaus, Mar 02 2001; Michel Drouzy (DrouzyM(AT)noos.fr), Oct 28 2001


LINKS



FORMULA



MATHEMATICA

Select[Prime[Range[150]], MemberQ[{0, 2}, Mod[#, 3]]&] (* Harvey P. Dale, Jun 14 2011 *)


PROG

(Magma) [ p: p in PrimesUpTo(1000)  #[ x: x in ResidueClassRing(p)  x^3 eq 2 ] eq 1 ]; // Klaus Brockhaus, Apr 11 2009


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



EXTENSIONS



STATUS

approved



