This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007528 Primes of the form 6k-1. (Formerly M3809) 84
 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For values of k see A024898. Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008 a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012 There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018 From Bernard Schott, Feb 14 2019: (Start) A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.) {2,3} Union A002476 Union {this sequence} = A000040. Except for 2 and 3, all Sophie Germain primes are of the form 6k-1. Except for 3, all the lesser of twin primes are also of the form 6k-1. Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End) For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870. A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126. Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127. LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. F. S. Carey, On some cases of the Solutions of the Congruence z^p^(n-1)=1, mod p, Proceedings of the London Mathematical Society, Volume s1-33, Issue 1, November 1900, Pages 294-312. Wikipedia, Dirichlet's theorem on arithmetic progressions. FORMULA A003627 \ {2}. - R. J. Mathar, Oct 28 2008 MAPLE select(isprime, [seq(6*n-1, n=1..100)]); # Muniru A Asiru, May 19 2018 MATHEMATICA Select[6 Range-1, PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *) PROG (PARI) forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011 (Haskell) a007528 n = a007528_list !! (n-1) a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1] -- Reinhard Zumkeller, Jul 13 2012 (GAP) Filtered(List([1..100], n->6*n-1), IsPrime); # Muniru A Asiru, May 19 2018 CROSSREFS Cf. A003627, A010051, A117047, A132231, A214360, A057145. Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11). Cf. A034694 (smallest prime == 1 (mod n)). Cf. A038700 (smallest prime == n-1 (mod n)). Cf. A038026 (largest possible value of smallest prime == r (mod n)). Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes). Cf. A048265, A324076. Sequence in context: A172337 A101328 A016969 * A144918 A144920 A051615 Adjacent sequences:  A007525 A007526 A007527 * A007529 A007530 A007531 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 05:33 EDT 2019. Contains 324218 sequences. (Running on oeis4.)