OFFSET
1,1
COMMENTS
Thangadurai and Vatwani prove that a(n) <= 2^(phi(n)+1)-1. - T. D. Noe, Oct 12 2011
Conjecture: a(n) < n^2 for n > 1. - Thomas Ordowski, Dec 19 2016
Eric Bach and Jonathan Sorenson show that, assuming GRH, a(n) <= (1 + o(1))*(phi(n)*log(n))^2 for n > 1. See the abstract of their paper in the Links section. - Jianing Song, Nov 10 2019
a(n) is the smallest prime p such that the multiplicative group modulo p has a subgroup of order n. - Joerg Arndt, Oct 18 2020
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, section 2.12, pp. 127-130.
P. Ribenboim, The Book of Prime Number Records. Chapter 4,IV.B.: The Smallest Prime In Arithmetic Progressions, 1989, pp. 217-223.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Eric Bach and Jonathan Sorenson, Explicit bounds for primes in residue classes, Mathematics of Computation, 65(216) (1996), 1717-1735.
Steven R. Finch, Linnik's Constant
S. Graham, On Linnik's Constant, Acta Arithm. 39, 1981, pp. 163-179.
I. Niven and B. Powell, Primes in Certain Arithmetic Progressions, Amer. Math. Monthly 83(6) (1976), 467-469.
R. Thangadurai and A. Vatwani, The least prime congruent to one modulo n, Amer. Math. Monthly 118(8) (2011), 737-742.
FORMULA
a(n) = min{m: m = k*n + 1 with k > 0 and A010051(m) = 1}. - Reinhard Zumkeller, Dec 17 2013
a(n) = n * A034693(n) + 1. - Joerg Arndt, Oct 18 2020
EXAMPLE
If n = 7, the smallest prime in the sequence 8, 15, 22, 29, ... is 29, so a(7) = 29.
MATHEMATICA
a[n_] := Block[{k = 1}, If[n == 1, 2, While[Mod[Prime@k, n] != 1, k++ ]; Prime@k]]; Array[a, 64] (* Robert G. Wilson v, Jul 08 2006 *)
With[{prs=Prime[Range[200]]}, Flatten[Table[Select[prs, Mod[#-1, n]==0&, 1], {n, 70}]]] (* Harvey P. Dale, Sep 22 2021 *)
PROG
(PARI) a(n)=if(n<0, 0, s=1; while((prime(s)-1)%n>0, s++); prime(s))
(Haskell)
a034694 n = until ((== 1) . a010051) (+ n) (n + 1)
-- Reinhard Zumkeller, Dec 17 2013
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
Labos Elemer, David W. Wilson, Spring 1998
STATUS
approved