The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007525 Decimal expansion of log_2 e. (Formerly M3221) 6
 1, 4, 4, 2, 6, 9, 5, 0, 4, 0, 8, 8, 8, 9, 6, 3, 4, 0, 7, 3, 5, 9, 9, 2, 4, 6, 8, 1, 0, 0, 1, 8, 9, 2, 1, 3, 7, 4, 2, 6, 6, 4, 5, 9, 5, 4, 1, 5, 2, 9, 8, 5, 9, 3, 4, 1, 3, 5, 4, 4, 9, 4, 0, 6, 9, 3, 1, 1, 0, 9, 2, 1, 9, 1, 8, 1, 1, 8, 5, 0, 7, 9, 8, 8, 5, 5, 2, 6, 6, 2, 2, 8, 9, 3, 5, 0, 6, 3, 4, 4, 4, 9, 6, 9, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Around 1670, James Gregory discovered by inversion of 1 - 1/2 + 1/3 - 1/4 + 1/5 - ... = log(2) that 1 + 1/2 - 1/12 + 1/24 - 19/720 + (27/1440 = 3/160) - 863/60480 + ... = 1/log(2). See formula with A002206 and A002207. See also A141417 signed /A091137; case i = 0 in A165313. First row in array p. 36 of the reference. - Paul Curtz, Sep 12 2011 This constant 1/log(2) is also related to the asymptotic evaluation of the maximum number of subtraction steps required to compute gcd(m, n) by the binary Euclidean algorithm, m and n being odd and chosen at random. - Jean-François Alcover, Jun 23 2014, after Steven Finch REFERENCES Paul Curtz, Intégration numérique des systèmes différentiels .. , note n° 12, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969. Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.18 Porter-Hensley constants, p. 159. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..5000 Simon Plouffe, 1/log(2) the inverse of the natural logarithm of 2 Srinivasa Ramanujan, Question 769, J. Ind. Math. Soc. FORMULA Equals lim_{n->infinity} A000670(n)/A052882(n). - Mats Granvik, Aug 10 2009 Equals Sum_{k>=-1} A002206(k)/A002207(k). - Paul Curtz, Sep 12 2011 Also equals integral_{x>=2} 1/(x*log(x)^2). - Jean-François Alcover, May 24 2013 1/log(2) = Sum_{n = -infinity..infinity} (2^n / (1 + 2^2^n)). - Nicolas Nagel, Mar 16 2018 More generally: 1/log(2) = Sum_{n = -infinity..infinity} (2^(n+x) / (1 + 2^2^(n+x))) for all real x. - Nicolas Nagel, Jul 02 2019 EXAMPLE 1.442695040888963407359924681... MATHEMATICA RealDigits[N[1/Log[2], 105]][[1]] (* Jean-François Alcover, Oct 30 2012 *) PROG (PARI) 1/log(2) \\ Charles R Greathouse IV, Jan 04 2016 CROSSREFS Sequence in context: A064860 A091223 A242053 * A151966 A010778 A202322 Adjacent sequences:  A007522 A007523 A007524 * A007526 A007527 A007528 KEYWORD nonn,cons,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 19:47 EDT 2020. Contains 336483 sequences. (Running on oeis4.)