login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202322
Decimal expansion of x satisfying x+2=exp(-x).
9
4, 4, 2, 8, 5, 4, 4, 0, 1, 0, 0, 2, 3, 8, 8, 5, 8, 3, 1, 4, 1, 3, 2, 7, 9, 9, 9, 9, 9, 9, 3, 3, 6, 8, 1, 9, 7, 1, 6, 2, 6, 2, 1, 2, 9, 3, 7, 3, 4, 7, 9, 6, 8, 4, 7, 1, 7, 7, 3, 3, 0, 7, 6, 9, 8, 2, 0, 1, 5, 9, 9, 2, 1, 4, 2, 0, 0, 4, 0, 7, 8, 4, 9, 0, 8, 6, 5, 9, 2, 4, 8, 1, 7, 8, 7, 3, 9, 5, 5
OFFSET
0,1
COMMENTS
For many choices of u and v, there is just one value of x satisfying u*x+v=e^(-x). Guide to related sequences, with graphs included in Mathematica programs:
u.... v.... x
1.... 2.... A202322
1.... 3.... A202323
2.... 2.... A202353
2.... e.... A202354
1... -1.... A202355
1.... 0.... A030178
2.... 0.... A202356
e.... 0.... A202357
3.... 0.... A202392
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A202322, take f(x,u,v)=x+2-e^(-x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.
FORMULA
x(u,v) = W(e^(v/u)/u) - v/u, where W = ProductLog = LambertW. - Jean-François Alcover, Feb 14 2013
Equals A226571 - 2 = LambertW(exp(2))-2. - Vaclav Kotesovec, Jan 09 2014
EXAMPLE
x=-0.442854401002388583141327999999336819716262...
MATHEMATICA
(* Program 1: A202322 *)
u = 1; v = 2;
f[x_] := u*x + v; g[x_] := E^-x
Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.45, -.44}, WorkingPrecision -> 110]
RealDigits[r] (* A202322 *)
(* Program 2: implicit surface of u*x+v=e^(-x) *)
f[{x_, u_, v_}] := u*x + v - E^-x;
t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 1, 2}]}, {v, 1, 3}, {u, 1, 3}];
ListPlot3D[Flatten[t, 1]] (* for A202322 *)
RealDigits[ ProductLog[E^2] - 2, 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
PROG
(PARI) lambertw(exp(2)) - 2 \\ G. C. Greubel, Jun 10 2017
CROSSREFS
Cf. A202320.
Sequence in context: A007525 A151966 A010778 * A365797 A232523 A376878
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 18 2011
EXTENSIONS
Digits from a(84) on corrected by Jean-François Alcover, Feb 14 2013
STATUS
approved