OFFSET
0,1
COMMENTS
For many choices of u and v, there is just one value of x satisfying u*x+v=e^(-x). Guide to related sequences, with graphs included in Mathematica programs:
u.... v.... x
1.... 2.... A202322
1.... 3.... A202323
2.... 2.... A202353
2.... e.... A202354
1... -1.... A202355
1.... 0.... A030178
2.... 0.... A202356
e.... 0.... A202357
3.... 0.... A202392
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A202322, take f(x,u,v)=x+2-e^(-x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.
LINKS
FORMULA
x(u,v) = W(e^(v/u)/u) - v/u, where W = ProductLog = LambertW. - Jean-François Alcover, Feb 14 2013
Equals A226571 - 2 = LambertW(exp(2))-2. - Vaclav Kotesovec, Jan 09 2014
EXAMPLE
x=-0.442854401002388583141327999999336819716262...
MATHEMATICA
(* Program 1: A202322 *)
u = 1; v = 2;
f[x_] := u*x + v; g[x_] := E^-x
Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.45, -.44}, WorkingPrecision -> 110]
RealDigits[r] (* A202322 *)
(* Program 2: implicit surface of u*x+v=e^(-x) *)
f[{x_, u_, v_}] := u*x + v - E^-x;
t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 1, 2}]}, {v, 1, 3}, {u, 1, 3}];
ListPlot3D[Flatten[t, 1]] (* for A202322 *)
RealDigits[ ProductLog[E^2] - 2, 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
PROG
(PARI) lambertw(exp(2)) - 2 \\ G. C. Greubel, Jun 10 2017
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 18 2011
EXTENSIONS
Digits from a(84) on corrected by Jean-François Alcover, Feb 14 2013
STATUS
approved