login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202354
Decimal expansion of the number x satisfying x+e=exp(-x).
2
7, 0, 1, 5, 0, 2, 0, 6, 3, 5, 6, 6, 8, 4, 4, 6, 1, 1, 0, 8, 2, 4, 9, 6, 9, 1, 7, 1, 5, 8, 6, 5, 0, 7, 6, 3, 9, 8, 4, 6, 2, 9, 2, 5, 6, 9, 3, 6, 2, 5, 3, 1, 7, 2, 5, 2, 5, 9, 3, 4, 5, 5, 5, 5, 8, 1, 3, 2, 6, 0, 5, 5, 8, 6, 2, 5, 5, 7, 5, 9, 5, 4, 1, 8, 9, 4, 2, 7, 3, 3, 8, 4, 9, 8, 2, 4, 6, 5, 2
OFFSET
0,1
COMMENTS
See A202322 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
x=-0.7015020635668446110824969171586507639...
MATHEMATICA
u = 1; v = E;
f[x_] := u*x + v; g[x_] := E^-x
Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]
RealDigits[r] (* A202354 *)
(* other program *)
RealDigits[ ProductLog[E^E] - E , 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
PROG
(PARI) lambertw(exp(exp(1))) - exp(1) \\ G. C. Greubel, Jun 10 2017
CROSSREFS
Cf. A202322.
Sequence in context: A199603 A121570 A169681 * A324498 A243908 A186642
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 18 2011
STATUS
approved