login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202352
Decimal expansion of greatest x satisfying 3*x = exp(x).
4
1, 5, 1, 2, 1, 3, 4, 5, 5, 1, 6, 5, 7, 8, 4, 2, 4, 7, 3, 8, 9, 6, 7, 3, 9, 6, 7, 8, 0, 7, 2, 0, 3, 8, 7, 0, 4, 6, 0, 3, 6, 5, 0, 3, 8, 5, 1, 3, 5, 3, 5, 9, 4, 5, 4, 2, 5, 9, 2, 8, 5, 4, 7, 3, 9, 9, 8, 9, 7, 7, 1, 6, 0, 5, 1, 1, 5, 7, 4, 8, 2, 7, 3, 2, 4, 2, 6, 5, 4, 8, 8, 1, 5, 2, 7, 7, 9, 8, 3
OFFSET
1,2
COMMENTS
See A202320 for a guide to related sequences. The Mathematica program includes a graph.
FORMULA
Equals -LambertW(-1,-1/3). - Gleb Koloskov, Jun 12 2021
EXAMPLE
least: 0.61906128673594511215232699402092223330147...
greatest: 1.51213455165784247389673967807203870460...
MATHEMATICA
u = 3; v = 0;
f[x_] := u*x + v; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 0.6, 0.7}, WorkingPrecision -> 110]
RealDigits[r] (* A202351 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
RealDigits[r] (* A202352 *)
RealDigits[ -ProductLog[-1, -1/3], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
PROG
(PARI) solve(x=1, 2, 3*x-exp(x)) \\ Michel Marcus, Nov 09 2017
CROSSREFS
Cf. A202320.
Sequence in context: A086039 A265824 A097413 * A115038 A231990 A369915
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 17 2011
STATUS
approved