login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202352 Decimal expansion of greatest x satisfying 3*x = exp(x). 4
1, 5, 1, 2, 1, 3, 4, 5, 5, 1, 6, 5, 7, 8, 4, 2, 4, 7, 3, 8, 9, 6, 7, 3, 9, 6, 7, 8, 0, 7, 2, 0, 3, 8, 7, 0, 4, 6, 0, 3, 6, 5, 0, 3, 8, 5, 1, 3, 5, 3, 5, 9, 4, 5, 4, 2, 5, 9, 2, 8, 5, 4, 7, 3, 9, 9, 8, 9, 7, 7, 1, 6, 0, 5, 1, 1, 5, 7, 4, 8, 2, 7, 3, 2, 4, 2, 6, 5, 4, 8, 8, 1, 5, 2, 7, 7, 9, 8, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A202320 for a guide to related sequences. The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least:  0.61906128673594511215232699402092223330147...

greatest:  1.51213455165784247389673967807203870460...

MATHEMATICA

u = 3; v = 0;

f[x_] := u*x + v; g[x_] := E^x

Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, 0.6, 0.7}, WorkingPrecision -> 110]

RealDigits[r] (* A202351 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]

RealDigits[r] (* A202352 *)

RealDigits[ -ProductLog[-1, -1/3], 10, 99] // First (* Jean-Fran├žois Alcover, Feb 27 2013 *)

PROG

(PARI) solve(x=1, 2, 3*x-exp(x)) \\ Michel Marcus, Nov 09 2017

CROSSREFS

Cf. A202320.

Sequence in context: A086039 A265824 A097413 * A115038 A231990 A010131

Adjacent sequences:  A202349 A202350 A202351 * A202353 A202354 A202355

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 14:09 EDT 2019. Contains 324185 sequences. (Running on oeis4.)