OFFSET
0,7
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..1009
X. Gourdon and P. Sebah, Some Constants from Number theory.
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, value P(m=4, n=1, s=9), page 21.
FORMULA
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(9m)*zeta(9m)/zeta(18m)/(1 + 2^(-9m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021
EXAMPLE
5.121028122527738383259898597063472005396598569391504803757141806973300...* 10^-7
MATHEMATICA
digits = 1004;
nmax0 = 50; (* initial number of sum terms *)
dnmax = 10; (* nmax increment *)
dd = 10; (* precision excess *)
Clear[PrimeZeta41];
f[s_] := (1 + 2^-s)^-1 * DirichletBeta[s] Zeta[s]/Zeta[2 s];
PrimeZeta41[s_, nmax_] := PrimeZeta41[s, nmax] = (1/2) Sum[MoebiusMu[2 n + 1]*Log[f[(2 n + 1)*9]]/(2 n + 1), {n, 0, nmax}] // N[#, digits + dd&;
PrimeZeta41[9, nmax = nmax0];
PrimeZeta41[9, nmax += dnmax];
While[Abs[PrimeZeta41[9, nmax] - PrimeZeta41[9, nmax - dnmax]] > 10^-(digits + dd), Print["nmax = ", nmax]; nmax += dnmax];
PrimeZeta41[9] = PrimeZeta41[9, nmax];
Join[{0, 0, 0, 0, 0, 0}, RealDigits[PrimeZeta41[9], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 07 2021 *)
PROG
(PARI) A086039_upto(N=100)={localprec(N+3); digits((PrimeZeta41(9)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003
EXTENSIONS
Edited by M. F. Hasler, Apr 26 2021
STATUS
approved