login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086037
Decimal expansion of the prime zeta modulo function at 7 for primes of the form 4k+1.
3
0, 0, 0, 0, 1, 2, 8, 1, 8, 4, 4, 8, 5, 9, 9, 7, 9, 5, 2, 6, 8, 2, 5, 1, 0, 2, 6, 5, 8, 2, 1, 6, 6, 5, 0, 7, 9, 3, 5, 8, 2, 0, 6, 0, 6, 7, 4, 9, 5, 6, 3, 3, 4, 4, 7, 9, 4, 3, 6, 2, 6, 5, 6, 9, 1, 4, 6, 8, 2, 1, 9, 4, 3, 9, 9, 4, 9, 5, 0, 8, 5, 2, 8, 5, 3, 2, 3, 8, 9, 5, 3, 4, 0, 5, 4, 6, 4, 2, 7, 4, 5, 3, 9, 2, 8
OFFSET
0,6
FORMULA
Zeta_Q(7) = Sum_{p in A002144} 1/p^7 where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m*log(DirichletBeta(7m)*zeta(7m)/zeta(14m)/(1+2^(-7m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021
EXAMPLE
1.2818448599795268251026582166507935820606749563344794362656914682... * 10^-5
MATHEMATICA
a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 120; $MaxExtraPrecision = 1200; Join[{0, 0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*7]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated Mar 14 2018 *)
PROG
(PARI) A086037_upto(N=100)={localprec(N+3); digits((PrimeZeta41(7)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021
CROSSREFS
Cf. A085996 (same for primes 4k+3), A343627 (for primes 3k+1), A343617 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085967 (PrimeZeta(7)), A002144 (primes of the form 4k+1).
Sequence in context: A201763 A254277 A244688 * A343487 A199787 A165274
KEYWORD
cons,nonn
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003
EXTENSIONS
Edited by M. F. Hasler, Apr 26 2021
STATUS
approved