login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343619
Decimal expansion of P_{3,2}(9) = Sum 1/p^9 over primes == 2 (mod 3).
9
0, 0, 1, 9, 5, 3, 6, 3, 7, 4, 3, 3, 1, 5, 8, 7, 1, 3, 7, 2, 0, 8, 0, 4, 6, 0, 1, 5, 1, 2, 3, 9, 2, 9, 1, 7, 6, 0, 6, 9, 3, 3, 5, 0, 0, 3, 9, 1, 2, 2, 2, 0, 6, 4, 6, 2, 9, 1, 6, 2, 6, 1, 3, 4, 0, 4, 2, 4, 6, 8, 4, 9, 4, 2, 8, 9, 4, 9, 0, 3, 2, 9, 3, 0, 3, 4, 2, 1, 7, 9, 3, 7, 8, 2, 6, 9, 0, 7, 9, 1, 2, 4, 6, 3, 8
OFFSET
0,4
COMMENTS
The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..1005
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, value P(m=3, n=2, s=9), p. 21.
FORMULA
P_{3,2}(9) = Sum_{p in A003627} 1/p^9 = P(9) - 1/3^9 - P_{3,1}(9).
EXAMPLE
0.0019536374331587137208046015123929176069335003912220646291626134042468494...
MATHEMATICA
digits = 1004; nmax0 = 50; dnmax = 10;
Clear[PrimeZeta31];
PrimeZeta31[s_, nmax_] := PrimeZeta31[s, nmax] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2 n + 1] ((1/(4 n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2 t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, nmax}] // N[#, digits + 5] &;
PrimeZeta31[9, nmax = nmax0];
PrimeZeta31[9, nmax += dnmax];
While[Abs[PrimeZeta31[9, nmax] - PrimeZeta31[9, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
PrimeZeta32[9] = PrimeZetaP[9] - 1/3^9 - PrimeZeta31[9, nmax];
Join[{0, 0}, RealDigits[PrimeZeta32[9], 10, digits][[1]] ] (* Jean-François Alcover, May 07 2021, after M. F. Hasler's PARI code *)
PROG
(PARI) A343619_upto(N=100)={localprec(N+5); digits((PrimeZeta32(9)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32
CROSSREFS
Cf. A003627 (primes 3k-1), A001017 (n^9), A085969 (PrimeZeta(9)).
Cf. A343612 - A343618 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 8).
Cf. A343629 (for primes 3k+1), A086039 (for primes 4k+1), A085998 (for primes 4k+3).
Sequence in context: A154543 A203132 A201515 * A259982 A200483 A057888
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Apr 25 2021
STATUS
approved