login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343622
E.g.f.: log(1 + x + Sum_{k>=2} prime(k-1) * x^k / k!).
2
1, 1, -1, -1, 6, -1, -79, 214, 1378, -11321, -14855, 611932, -1739312, -34374895, 311453831, 1548864398, -42005057494, 66254532775, 5287751144127, -45726542532086, -568193240268798, 12768316133375343, 16933257518347115, -3008868695961855284, 21477836260078982762
OFFSET
1,5
FORMULA
a(n) = A008578(n) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * A008578(n-k) * k * a(k).
MATHEMATICA
nmax = 25; CoefficientList[Series[Log[1 + x + Sum[Prime[k - 1] x^k/k!, {k, 2, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! // Rest
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 04 2021
STATUS
approved