login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007447
Logarithm of e.g.f. for primes.
(Formerly M0159)
10
2, -1, 3, -12, 59, -354, 2535, -21190, 202731, -2183462, 26130441, -343956264, 4938891841, -76827253854, 1287026203647, -23100628140676, 442271719973507, -8996704216880580, 193776558133638811, -4405549734148088108, 105432710994387193283, -2649353692976978990070
OFFSET
1,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
E.g.f.: log(1 + Sum_{k>=1} prime(k)*x^k/k!). - Ilya Gutkovskiy, Mar 10 2018
MAPLE
a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n) -add(j*
binomial(n, j)*t(n-j)*a(j), j=1..n-1)/n))(i->ithprime(i))
end:
seq(a(n), n=1..25); # Alois P. Heinz, Mar 06 2018
MATHEMATICA
a[n_] := a[n] = Function[t, If[n==0, 0, t[n] - Sum[j Binomial[n, j] t[n-j] a[j], {j, 1, n-1}]/n]][Prime];
Array[a, 25] (* Jean-François Alcover, Oct 30 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A317548 A320327 A366591 * A153189 A362272 A095852
KEYWORD
sign
AUTHOR
EXTENSIONS
Signs from Christian G. Bower, Nov 15 1998
STATUS
approved