login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007446
Exponentiation of e.g.f. for primes.
(Formerly M1785)
16
1, 2, 7, 31, 162, 973, 6539, 48410, 390097, 3389877, 31534538, 312151125, 3271508959, 36149187780, 419604275375, 5100408982825, 64743452239424, 856157851884881, 11768914560546973, 167841252874889898, 2479014206472819045, 37860543940437797897
OFFSET
0,2
COMMENTS
From Tilman Neumann, Oct 05 2008: (Start)
a(n) is also given by
- substituting the primes (A000040) into (the simplest) Faa di Bruno's formula, or
- the complete Bell polynomial of the first n prime arguments, or
- computing n-th moments from the first n primes as cumulants
The examples show that the coefficients of the prime power products are just A036040/A080575 (these are just rearrangements of the same coefficients). Moreover, the prime products of the additional terms span the whole space of natural numbers, thus what we see here is a reordering of the natural numbers! (End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
E.g.f.: exp(Sum_{k>=1} prime(k)*x^k/k!). - Ilya Gutkovskiy, Nov 26 2017
EXAMPLE
From Tilman Neumann, Oct 05 2008: (Start)
Let p_i denote the i-th prime A000040(i). Then
a(1)=2 = 1*p_1
a(2)=7 = 1*p_2 + 1*p_1^2
a(3)=31 = 1*p_3 + 3*p_2*p_1 + 1*p_1^3
a(4)=162= 1*p_4 + 4*p_3*p_1 + 3*p_2^2 + 6*p_2*p_1^2 + 1*p_1^4
a(5)=973= 1*p_5 + 5*p_4*p_1 + 10*p_3*p_2 + 10*p_3*p_1^2 + 15*p_2^2*p_1 + 10*p_2*p_1^3 + 1*p_1^5
(End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*ithprime(j)*a(n-j), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 18 2015
MATHEMATICA
a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n-1, j-1]*Prime[j]*a[n-j], {j, 1, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
Table[Sum[BellY[n, k, Prime[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
PROG
(MuPAD)
completeBellMatrix := proc(x, n)
// x - vector x[1]...x[m], m>=n
local i, j, M;
begin
M:=matrix(n, n): // zero-initialized
for i from 1 to n-1 do
M[i, i+1]:=-1:
end_for:
for i from 1 to n do
for j from 1 to i do
M[i, j] := binomial(i-1, j-1)*x[i-j+1]:
end_for:
end_for:
return (M):
end_proc:
completeBellPoly := proc(x, n)
begin
return (linalg::det(completeBellMatrix(x, n))):
end_proc:
x:=[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]:
for i from 1 to 10 do print(i, completeBellPoly(x, i)): end_for:
// Tilman Neumann, Oct 05 2008
CROSSREFS
Cf. A036040, A080575. - Tilman Neumann, Oct 05 2008
Sequence in context: A030966 A009132 A125275 * A277396 A227119 A002872
KEYWORD
easy,nonn
STATUS
approved