OFFSET
0,2
COMMENTS
From Tilman Neumann, Oct 05 2008: (Start)
a(n) is also given by
- substituting the primes (A000040) into (the simplest) Faa di Bruno's formula, or
- the complete Bell polynomial of the first n prime arguments, or
- computing n-th moments from the first n primes as cumulants
The examples show that the coefficients of the prime power products are just A036040/A080575 (these are just rearrangements of the same coefficients). Moreover, the prime products of the additional terms span the whole space of natural numbers, thus what we see here is a reordering of the natural numbers! (End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500
FORMULA
E.g.f.: exp(Sum_{k>=1} prime(k)*x^k/k!). - Ilya Gutkovskiy, Nov 26 2017
EXAMPLE
From Tilman Neumann, Oct 05 2008: (Start)
Let p_i denote the i-th prime A000040(i). Then
a(1)=2 = 1*p_1
a(2)=7 = 1*p_2 + 1*p_1^2
a(3)=31 = 1*p_3 + 3*p_2*p_1 + 1*p_1^3
a(4)=162= 1*p_4 + 4*p_3*p_1 + 3*p_2^2 + 6*p_2*p_1^2 + 1*p_1^4
a(5)=973= 1*p_5 + 5*p_4*p_1 + 10*p_3*p_2 + 10*p_3*p_1^2 + 15*p_2^2*p_1 + 10*p_2*p_1^3 + 1*p_1^5
(End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*ithprime(j)*a(n-j), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 18 2015
MATHEMATICA
a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n-1, j-1]*Prime[j]*a[n-j], {j, 1, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
Table[Sum[BellY[n, k, Prime[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
PROG
(MuPAD)
completeBellMatrix := proc(x, n)
// x - vector x[1]...x[m], m>=n
local i, j, M;
begin
M:=matrix(n, n): // zero-initialized
for i from 1 to n-1 do
M[i, i+1]:=-1:
end_for:
for i from 1 to n do
for j from 1 to i do
M[i, j] := binomial(i-1, j-1)*x[i-j+1]:
end_for:
end_for:
return (M):
end_proc:
completeBellPoly := proc(x, n)
begin
return (linalg::det(completeBellMatrix(x, n))):
end_proc:
x:=[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]:
for i from 1 to 10 do print(i, completeBellPoly(x, i)): end_for:
// Tilman Neumann, Oct 05 2008
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved