OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..200
FORMULA
E.g.f.: exp(A''(x) - 1) where A(x) is the e.g.f. for A000045.
EXAMPLE
a(2) = 7: We can choose the set partition {{1,2}} and then choose the subsets: {}, {1}, {2}; we can choose the set partition {{1},{2}} and then the subsets: {}, {1}, {2}, {1,2}.
MAPLE
F:= combinat[fibonacci]:
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1)*F(j+2)*a(n-j), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 06 2017
MATHEMATICA
nn=15; Range[0, nn]!CoefficientList[Series[Exp[-1+Exp[x/2]Cosh[5^(1/2)x/2] +3Exp[x/2]Sinh[5^(1/2)x/2]/5^(1/2)], {x, 0, nn}], x] (* Geoffrey Critzer, Jul 01 2013 *)
PROG
(Python)
from sympy.core.cache import cacheit
from sympy import fibonacci as F, binomial
@cacheit
def a(n): return 1 if n==0 else sum([binomial(n - 1, j - 1)*F(j + 2)*a(n - j) for j in range(1, n + 1)])
print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 07 2017, after Maple code
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 01 2013
STATUS
approved