login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227119
Number of ways to select a set partition, P of {1,2,...,n} and then select a subset, S of {1,2,...,n} such that for all i in {1,2,...,n-1} if i and i+1 are in S then i and i+1 are in different blocks of P.
1
1, 2, 7, 31, 163, 985, 6676, 49918, 406820, 3580011, 33764544, 339222866, 3612046889, 40588278875, 479542299692, 5938050050297, 76848380886090, 1036869475470365, 14553056889254517, 212063804824260167, 3202482669648363619, 50039504959872274840
OFFSET
0,2
LINKS
FORMULA
E.g.f.: exp(A''(x) - 1) where A(x) is the e.g.f. for A000045.
EXAMPLE
a(2) = 7: We can choose the set partition {{1,2}} and then choose the subsets: {}, {1}, {2}; we can choose the set partition {{1},{2}} and then the subsets: {}, {1}, {2}, {1,2}.
MAPLE
F:= combinat[fibonacci]:
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1)*F(j+2)*a(n-j), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 06 2017
MATHEMATICA
nn=15; Range[0, nn]!CoefficientList[Series[Exp[-1+Exp[x/2]Cosh[5^(1/2)x/2] +3Exp[x/2]Sinh[5^(1/2)x/2]/5^(1/2)], {x, 0, nn}], x] (* Geoffrey Critzer, Jul 01 2013 *)
PROG
(Python)
from sympy.core.cache import cacheit
from sympy import fibonacci as F, binomial
@cacheit
def a(n): return 1 if n==0 else sum([binomial(n - 1, j - 1)*F(j + 2)*a(n - j) for j in range(1, n + 1)])
print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 07 2017, after Maple code
CROSSREFS
Sequence in context: A125275 A007446 A277396 * A002872 A105216 A260532
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 01 2013
STATUS
approved