login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260532 Coefficients in asymptotic expansion of sequence A051295. 9
1, 2, 7, 31, 165, 1025, 7310, 59284, 543702, 5618267, 65200918, 846462826, 12229783811, 195394019337, 3427472046792, 65526442181293, 1355785469986828, 30166624979467869, 717769036033944699, 18174105506247664633, 487655384740384445407, 13816406622559942660420 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Richard J. Martin, and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315.
FORMULA
a(k) ~ 2 * (k-1)! / (log(2))^k.
a(n) = Sum_{k=0..n} A134378(k) * Stirling2(n, k). - Vaclav Kotesovec, Aug 04 2015
EXAMPLE
A051295(n)/(n-1)! ~ 1 + 2/n + 7/n^2 + 31/n^3 + 165/n^4 + 1025/n^5 + 7310/n^6 + ...
MATHEMATICA
nmax = 30; b = CoefficientList[Assuming[Element[x, Reals], Series[E^(2/x)*x / (ExpIntegralEi[1/x] - E^(1/x))^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]] * StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}] (* Vaclav Kotesovec, Aug 03 2015 *)
CROSSREFS
Sequence in context: A227119 A002872 A105216 * A193657 A007164 A321208
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jul 28 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 19:20 EDT 2024. Contains 375990 sequences. (Running on oeis4.)