login
A260530
Coefficients in asymptotic expansion of sequence A051296.
8
1, 2, 7, 35, 216, 1575, 13243, 126508, 1359437, 16312915, 217277446, 3194459333, 51557948291, 908431129702, 17376289236947, 358847480175063, 7959468559605624, 188702262366570387, 4760773506835189975, 127312428854513811012, 3596091234340397964321
OFFSET
0,2
LINKS
Richard J. Martin, and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315.
FORMULA
a(k) ~ k! / (2 * (log(2))^(k+1)).
EXAMPLE
A051296(n) / n! ~ 1 + 2/n + 7/n^2 + 35/n^3 + 216/n^4 + 1575/n^5 + 13243/n^6 + ...
MATHEMATICA
nmax = 30; b = CoefficientList[Assuming[Element[x, Reals], Series[E^(2/x)*x^2 / (ExpIntegralEi[1/x] - 2*x*E^(1/x))^2, {x, 0, nmax}]], x]; Flatten[{1, Table[Sum[b[[k+1]]*StirlingS2[n-1, k-1], {k, 1, n}], {n, 1, nmax}]}] (* Vaclav Kotesovec, Aug 03 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jul 28 2015
STATUS
approved