login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260578 Coefficients in asymptotic expansion of sequence A259869. 11
1, 0, -2, -6, -29, -196, -1665, -16796, -194905, -2549468, -37055681, -592013436, -10307671769, -194225544124, -3937581243201, -85460277981116, -1977127315636969, -48573021658496348, -1262954975286604673, -34650561545808167292, -1000438355724912080873 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
For k > 1 is a(k) negative.
LINKS
Richard J. Martin, and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315.
FORMULA
a(k) ~ -k! / (2 * exp(1) * (log(2))^(k+1)).
EXAMPLE
A259869(n) / (n!/exp(1)) ~ 1 - 2/n^2 - 6/n^3 - 29/n^4 - 196/n^5 - 1665/n^6 - ...
MATHEMATICA
nmax = 20; b = CoefficientList[Assuming[Element[x, Reals], Series[x^2*E^(2 + 2/x)/ExpIntegralEi[1 + 1/x]^2, {x, 0, nmax}]], x]; Flatten[{1, Table[Sum[b[[k+1]]*StirlingS2[n-1, k-1], {k, 1, n}], {n, 1, nmax}]}] (* Vaclav Kotesovec, Aug 03 2015 *)
CROSSREFS
Sequence in context: A124529 A370456 A246385 * A296792 A241462 A187006
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Jul 29 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 04:18 EST 2024. Contains 370499 sequences. (Running on oeis4.)