login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370456
a(0) = 1, a(n) = (1/2) * Sum_{j=1..n} (1-(-1)^j-(-2)^j) * binomial(n,j) * a(n-j) for n > 0.
2
1, 2, 6, 29, 192, 1577, 15516, 178229, 2339952, 34559057, 567117876, 10237161629, 201592448712, 4300618438937, 98803485774636, 2432074390036229, 63857242954421472, 1781444969999245217, 52620896463516221796, 1640684857196257578029, 53847865360369426418232
OFFSET
0,2
COMMENTS
Binomial transform of A370092.
FORMULA
E.g.f.: 2*exp(2*x)/(1 + exp(x) + exp(2*x) - exp(3*x)).
PROG
(SageMath)
def a(m):
if m==0:
return 1
else:
return 1/2*sum([(1-(-2)^j-(-1)^j)*binomial(m, j)*a(m-j) for j in [1, .., m]])
list(a(m) for m in [0, .., 20])
(PARI) seq(n)={my(p=exp(x + O(x*x^n))); Vec(serlaplace(2*p^2/(1 + p + p^2 - p^3)))} \\ Andrew Howroyd, Feb 23 2024
CROSSREFS
Sequence in context: A370217 A020126 A124529 * A246385 A260578 A296792
KEYWORD
nonn
AUTHOR
STATUS
approved