login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370163
a(0) = 2, a(n) = (-1)^n + (-2)^n + (1/2) * Sum_{j=1..n} (1-(-1)^j-(-2)^j) * binomial(n,j) * a(n-j) for n > 0.
2
2, 1, 5, 25, 161, 1321, 13025, 149605, 1963841, 29004721, 475975745, 8591917885, 169193833121, 3609452038921, 82924458549665, 2041207822721365, 53594538159184001, 1495143168658285921, 44164021453758342785, 1377005070100813288045, 45193800193226286112481
OFFSET
0,1
COMMENTS
Inverse binomial transform of A370092 + A370456.
FORMULA
E.g.f.: 2*(1 + exp(x))/(1 + exp(x) + exp(2*x) - exp(3*x)).
PROG
(SageMath)
def a(m):
if m==0:
return 2
else:
return (-1)^m+(-2)^m+1/2*sum([(1-(-2)^j-(-1)^j)*binomial(m, j)*a(m-j) for j in [1, .., m]])
list(a(m) for m in [0, .., 20])
(SageMath)
f=2*(1+e^x)/(1+e^x+e^(2*x)-e^(3*x))
print([(diff(f, x, i)).subs(x=0) for i in [0, .., 20]])
(PARI) seq(n)={my(p=exp(x + O(x*x^n))); Vec(serlaplace(2*(1 + p)/(1 + p + p^2 - p^3)))} \\ Andrew Howroyd, Feb 26 2024
CROSSREFS
Sequence in context: A260701 A184300 A317390 * A075403 A260503 A236436
KEYWORD
nonn
AUTHOR
STATUS
approved