login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260576 Least k such that the product of the first n primes of the form m^2+1 (A002496) divides k^2+1. 0
1, 3, 13, 327, 36673, 950117, 801495893, 5896798453, 760999599793, 3828797295053127, 520910599208391893, 2418812764637100821917, 793123421312468129647727, 6936392582189824489589830053, 31170731920863007986026123435697, 5284787778858696936313058199017107 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Conjecture: the sequence is infinite.
Let b(n) = Product_{k=1..n} A002496(k): 2, 10, 170, 6290, 635290, ...
b(1) divides k^2+1 for k = 1, 3, 5, ...
b(2) divides k^2+1 for k = 3, 7, 13, 17, 23, 27, 33, 37, 43, 47, 53, 57, 63, 67, 73, 77, 83, ...
b(3) divides k^2+1 for k = 13, 47, 123, 157, 183, 217, 293, 327, 353, 387, 463, 497, 523, ...
b(4) divides k^2+1 for k = 327, 1067, 2707, 2843, 3447, 3583, 5223, 5963, 6617, 7357, 8997, 9133, 9737, 9873, ...
b(5) divides k^2+1 for k = 36673, 38067, 66347, 141087, 217443, 240087, 292183, 314827, 320463, ...
LINKS
MAPLE
with(numtheory):lst:={2}:nn:=100:
for i from 1 to nn do:
p:=i^2+1:
if isprime(p)
then
lst:=lst union {p}:
else fi:
od:
pr:=1:
for n from 1 to 7 do:
pr:=pr*lst[n]:ii:=0:
for j from 1 to 10^9 while(ii=0) do:
if irem(j^2+1, pr)=0
then
ii:=1:
printf("%d %d \n", n, j):
fi:
od:
od:
CROSSREFS
Sequence in context: A113526 A113612 A180654 * A156358 A066266 A092845
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 29 2015
EXTENSIONS
a(8)-a(17) from Hiroaki Yamanouchi, Aug 15 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 10:48 EST 2023. Contains 367650 sequences. (Running on oeis4.)