login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180654
E.g.f.: A(x) = Sum_{n>=0} log( Sum_{k=0..n} C(n,k)^2*x^k )^n*x^n/(n!*n^n).
0
1, 1, 3, -13, -321, 13434, 103022, -60330726, 4269491916, 422156508320, -186525936386808, 22409109754552542, 6675208135884604731, -4757044765774305527628, 1070232275818826170463982
OFFSET
0,3
COMMENTS
Compare g.f. to: 1+x = Sum_{n>=0} log( (1+x)^n )^n*x^n/(n!*n^n).
Conjecture 1: this sequence consists entirely of integers.
Conjecture 2: the sequence of coefficients of [x^n/n! ] in the series:
. F(x,p) = Sum_{n>=0} log( Sum_{k=0..n} C(n,k)^p*x^k )^n*x^n/(n!*n^n)
consists entirely of integers for integer p>=1.
Conjecture 3: the sequence of coefficients of [x^n/n! ] in the series:
. G(x) = Sum_{n>=0} log( Sum_{k=0..n} C(n,k)^n*x^k )^n*x^n/(n!*n^n)
consists entirely of integers.
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2 - 13*x^3/3! - 321*x^4/4! + 13434*x^5/5! +...
A(x) = 1 + log(1+x) + log(1+4*x+x^2)^2/(2!*2^2) + log(1+9*x+9*x^2+x^3)^3/(3!*3^3) + log(1+16*x+36*x^2+16*x^3+x^4)^4/(4!*4^4) + log(1+25*x+100*x^2+100*x^3+25*x^4+x^5)^5/(5!*5^5) +...
PROG
(PARI) {a(n)=local(A=1+sum(m=1, n, log(sum(k=0, m, binomial(m, k)^2*x^k)+x*O(x^n))^m/m^m/m!)); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A045748 A113526 A113612 * A260576 A156358 A066266
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 14 2010
STATUS
approved