login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180655
Semiprimes (products of two distinct primes) of the form, next perfect square minus semiprime equals perfect square.
1
15, 21, 35, 55, 65, 77, 91, 143, 187, 209, 221, 247, 299, 323, 391, 437, 493, 551, 589, 667, 713, 851, 899, 1073, 1147, 1189, 1247, 1271, 1333, 1457, 1517, 1591, 1739, 1763, 1927, 1961, 2021, 2173, 2279, 2419, 2491, 2501, 2537, 2623, 2773, 2867, 3127, 3149
OFFSET
1,1
EXAMPLE
3*5=15,16-15=1; 3*7=21;25-21=4->2; 5*13=65,81-65=16->4;...
MATHEMATICA
f1[n_]:=Last/@FactorInteger[n]=={1, 1}; f2[n_]:=IntegerQ[Sqrt[Ceiling[Sqrt[n]]^2-n]]; lst={}; Do[If[f1[n]&&f2[n], AppendTo[lst, n]], {n, 3*7!}]; lst
spQ[n_]:=Module[{nps=Ceiling[Sqrt[n]]^2}, PrimeNu[n]==PrimeOmega[n] == 2 && IntegerQ[Sqrt[nps-n]]]; Select[Range[3200], spQ] (* Harvey P. Dale, Aug 17 2012 *)
CROSSREFS
Sequence in context: A081934 A095147 A081977 * A254365 A335674 A349096
KEYWORD
nonn
AUTHOR
STATUS
approved