The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260534 Square array read by ascending antidiagonals, T(n,k) = Sum_{j=0..k} n^j*(C(k-j,j) mod 2). 1
 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 5, 1, 7, 2, 1, 1, 1, 6, 1, 13, 5, 3, 1, 1, 1, 7, 1, 21, 10, 11, 1, 1, 1, 1, 8, 1, 31, 17, 31, 1, 4, 1, 1, 1, 9, 1, 43, 26, 69, 1, 23, 3, 1, 1, 1, 10, 1, 57, 37, 131, 1, 94, 21, 5, 1, 1, 1, 11 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS A parametrization of Stern's diatomic series (which is here T(1,k)). (For other generalizations of Dijkstra's fusc function see the Luschny link.) LINKS Chai Wah Wu, Table of n, a(n) for n = 0..10010 Peter Luschny, Rational Trees and Binary Partitions. EXAMPLE Array starts: n\k[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [0] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [1] 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, ... [A002487] [2] 1, 1, 3, 1, 7, 5, 11, 1, 23, 21, 59, ... [A101624] [3] 1, 1, 4, 1, 13, 10, 31, 1, 94, 91, 355, ... [4] 1, 1, 5, 1, 21, 17, 69, 1, 277, 273, 1349, ... [A101625] [5] 1, 1, 6, 1, 31, 26, 131, 1, 656, 651, 3881, ... [6] 1, 1, 7, 1, 43, 37, 223, 1, 1339, 1333, 9295, ... [7] 1, 1, 8, 1, 57, 50, 351, 1, 2458, 2451, 19559, ... [8] 1, 1, 9, 1, 73, 65, 521, 1, 4169, 4161, 37385, ... -,-,-,-,A002061,A002522,A071568,-,-,A059826,-,A002523, MAPLE T := (n, k) -> add(modp(binomial(k-j, j), 2)*n^j, j=0..k): seq(lprint(seq(T(n, k), k=0..10)), n=0..5); MATHEMATICA Table[If[(n - k) == 0, 1, Sum[(n - k)^j Mod[Binomial[k - j, j], 2], {j, 0, k}]], {n, 0, 10}, {k, 0, n}] (* Michael De Vlieger, Sep 21 2015 *) PROG (Python) def A260534_T(n, k): return sum(0 if ~(k-j) & j else n**j for j in range(k+1)) # Chai Wah Wu, Feb 08 2016 CROSSREFS Cf. A002061, A002487, A002522, A002523, A059826, A071568, A101624, A101625. Sequence in context: A107682 A349703 A178239 * A350103 A085476 A124944 Adjacent sequences: A260531 A260532 A260533 * A260535 A260536 A260537 KEYWORD nonn,tabl AUTHOR Peter Luschny, Sep 20 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 01:05 EDT 2024. Contains 375059 sequences. (Running on oeis4.)