login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101624 Stern-Jacobsthal numbers. 9
1, 1, 3, 1, 7, 5, 11, 1, 23, 21, 59, 17, 103, 69, 139, 1, 279, 277, 827, 273, 1895, 1349, 2955, 257, 5655, 5141, 14395, 4113, 24679, 16453, 32907, 1, 65815, 65813, 197435, 65809, 460647, 329029, 723851, 65793, 1512983, 1381397, 3881019, 1118225 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The Stern diatomic sequence A002487 could be called the Stern-Fibonacci sequence, since it is given by A002487(n) = Sum_{k=0..floor(n/2)} (binomial(n-k,k) mod 2), where F(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k,k). Now a(n) = Sum_{k=0..floor(n/2)} (binomial(n-k,k) mod 2)*2^k, where J(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*2^k, with J(n) = A001045(n), the Jacobsthal numbers. - Paul Barry, Sep 16 2015

These numbers seem to encode Stern (0, 1)-polynomials in their binary expansion. See Dilcher & Ericksen paper, especially Table 1 on page 79, page 5 in PDF. See A125184 (A260443) for another kind of Stern-polynomials, and also A177219 for a reference to maybe a third kind. - Antti Karttunen, Nov 01 2016

LINKS

Ivan Panchenko, Table of n, a(n) for n = 0..1000

K. Dilcher and L. Ericksen, Reducibility and irreducibility of Stern (0, 1)-polynomials, Communications in Mathematics, Volume 22/2014 , pp. 77-102.

FORMULA

a(n) = Sum_{k=0..floor(n/2)} (binomial(n-k, k) mod 2)*2^k.

a(2^n-1)=1, a(2*n) = 2*a(n-1) + a(n+1) = A099902(n); a(2*n+1) = A101625(n+1).

a(n) = Sum_{k=0..n} (binomial(k, n-k) mod 2)*2^(n-k). - Paul Barry, May 10 2005

a(n) = Sum_{k=0..n} A106344(n,k)*2^(n-k). - Philippe Deléham, Dec 18 2008

a(0)=1, a(1)=1, a(n) = a(n-1) XOR (a(n-2)*2), where XOR is the bitwise exclusive-OR operator. - Alex Ratushnyak, Apr 14 2012

PROG

(Python)

prpr = 1

prev = 1

print("1, 1", end=", ")

for i in range(99):

    current = (prev)^(prpr*2)

    print(current, end=", ")

    prpr = prev

    prev = current

# Alex Ratushnyak, Apr 14 2012

(Haskell)

a101624 = sum . zipWith (*) a000079_list . map (flip mod 2) . a011973_row

-- Reinhard Zumkeller, Jul 14 2015

CROSSREFS

Cf. A002487, A011973, A000079, A006921.

Cf. A125184, A260443, A177219.

Sequence in context: A138257 A283975 A071043 * A166519 A213043 A319740

Adjacent sequences:  A101621 A101622 A101623 * A101625 A101626 A101627

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Dec 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:24 EST 2021. Contains 349567 sequences. (Running on oeis4.)