login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177219
a(1) = 1; a(2n) = -a(n); a(2n+1) = -a(n) + a(n+1).
5
1, -1, -2, 1, -1, 2, 3, -1, -2, 1, 3, -2, 1, -3, -4, 1, -1, 2, 3, -1, 2, -3, -5, 2, 3, -1, -4, 3, -1, 4, 5, -1, -2, 1, 3, -2, 1, -3, -4, 1, 3, -2, -5, 3, -2, 5, 7, -2, 1, -3, -4, 1, -3, 4, 7, -3, -4, 1, 5, -4, 1, -5, -6, 1, -1, 2, 3, -1, 2, -3, -5, 2, 3, -1, -4, 3, -1, 4, 5, -1
OFFSET
1,3
LINKS
J.P. Allouche and M. Mendes France, Stern-Brocot polynomials and power series, arXiv preprint arXiv:1202.0211 [math.NT], 2012. - From N. J. A. Sloane, May 10 2012
FORMULA
Let M = an infinite lower triangular matrix with (1, -1, -1, 0, 0, 0,...) in every column, shifted down twice for columns k >1. Then the sequence is the left-shifted vector of Lim_{n->inf} M^n.
G.f.: x*Product_{k>=0} (1 - x^(2^k) - x^(2^(k + 1))). - Ilya Gutkovskiy, Aug 30 2017
EXAMPLE
a(6) = 2 = (-1)*a(3) = (-1)*(-2). a(7) = 3 = (-1)*a(3) + a(4) = (-1)*(-2) + 1.
MAPLE
A177219 := proc(n)
local npr ;
npr := floor(n/2) ;
if n = 1 then
1;
elif type(n, 'even') then
-procname(npr) ;
else
-procname(npr)+procname(npr+1) ;
end if;
end proc: # R. J. Mathar, Mar 14 2014
MATHEMATICA
a[1] = 1; a[n_] := a[n] = If[EvenQ[n], -a[n/2], -a[(n-1)/2]+a[(n-1)/2+1]];
Array[a, 80] (* Jean-François Alcover, Nov 24 2017 *)
CROSSREFS
Sequence in context: A241915 A301891 A332089 * A277700 A140191 A317840
KEYWORD
sign,easy
AUTHOR
Gary W. Adamson, May 04 2010
STATUS
approved