login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213043
Convolution of (1,-1,2,-2,3,-3,...) and A000045 (Fibonacci numbers).
1
1, 0, 3, 1, 7, 5, 16, 17, 38, 50, 94, 138, 239, 370, 617, 979, 1605, 2575, 4190, 6755, 10956, 17700, 28668, 46356, 75037, 121380, 196431, 317797, 514243, 832025, 1346284, 2178293, 3524594, 5702870, 9227482, 14930334, 24157835, 39088150, 63246005, 102334135
OFFSET
0,3
COMMENTS
(1,-1,2,-2,3,-3,...) = ((-1)^n)*(1+floor(n/2)), which results from A001057 by removing its initial 0.
FORMULA
a(n) = 3*a(n-2)+a(n-3)-2*a(n-4)-a(n-5).
G.f.: 1/((1 + x)^2 * (1 - 2*x + x^3)).
From Vladimir Reshetnikov, Oct 29 2015: (Start)
a(n) = Fibonacci(n+1) + ((-1)^n*(2*n+1)-1)/4, where Fibonacci(n) = A000045(n).
Recurrence (4-term): a(0) = 1, a(1) = 0, a(2) = 3, (2*n+1)*a(n) = n + 1 - 2*a(n-1) + 4*(n+1)*a(n-2) + (2*n+3)*a(n-3).
(End)
From Colin Barker, Mar 16 2016: (Start)
a(n) = (-5-5*(-1)^n+2^(1-n)*sqrt(5)*(-(1-sqrt(5))^(1+n)+(1+sqrt(5))^(1+n))+10*(-1)^n*(1+n))/20.
a(n) = (sqrt(5)*2^(1-n)*((1+sqrt(5))^(n+1)-(1-sqrt(5))^(n+1))+10*(n+1)-10)/20 for n even.
a(n) = (sqrt(5)*2^(1-n)*((1+sqrt(5))^(n+1)-(1-sqrt(5))^(n+1))-10*(n+1))/20 for n odd.
(End)
EXAMPLE
a(5) = (1,-1,2,-2,3,-3)**(1,1,2,3,5,8)=1*8-1*5+2*3-2*2+3*1-3*1 = 5.
MATHEMATICA
f[x_] := (1 - x^2) (1 + x); g[x] := 1 - x - x^2;
s = Normal[Series[1/(f[x] g[x]), {x, 0, 60}]]
c = CoefficientList[s, x] (* A213043 *)
LinearRecurrence[{0, 3, 1, -2, -1}, {1, 0, 3, 1, 7}, 60]
Table[Fibonacci[n+1] + ((-1)^n (2n+1) - 1)/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)
PROG
(PARI) Vec(1/((1-x)*(1+x)^2*(1-x-x^2)) + O(x^50)) \\ Colin Barker, Mar 16 2016
CROSSREFS
Sequence in context: A375584 A101624 A166519 * A319740 A275662 A110441
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 10 2012
STATUS
approved