Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Mar 16 2016 12:52:15
%S 1,0,3,1,7,5,16,17,38,50,94,138,239,370,617,979,1605,2575,4190,6755,
%T 10956,17700,28668,46356,75037,121380,196431,317797,514243,832025,
%U 1346284,2178293,3524594,5702870,9227482,14930334,24157835,39088150,63246005,102334135
%N Convolution of (1,-1,2,-2,3,-3,...) and A000045 (Fibonacci numbers).
%C (1,-1,2,-2,3,-3,...) = ((-1)^n)*(1+floor(n/2)), which results from A001057 by removing its initial 0.
%H Colin Barker, <a href="/A213043/b213043.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,1,-2,-1).
%F a(n) = 3*a(n-2)+a(n-3)-2*a(n-4)-a(n-5).
%F G.f.: 1/((1 + x)^2 * (1 - 2*x + x^3)).
%F From _Vladimir Reshetnikov_, Oct 29 2015: (Start)
%F a(n) = Fibonacci(n+1) + ((-1)^n*(2*n+1)-1)/4, where Fibonacci(n) = A000045(n).
%F Recurrence (4-term): a(0) = 1, a(1) = 0, a(2) = 3, (2*n+1)*a(n) = n + 1 - 2*a(n-1) + 4*(n+1)*a(n-2) + (2*n+3)*a(n-3).
%F (End)
%F From _Colin Barker_, Mar 16 2016: (Start)
%F a(n) = (-5-5*(-1)^n+2^(1-n)*sqrt(5)*(-(1-sqrt(5))^(1+n)+(1+sqrt(5))^(1+n))+10*(-1)^n*(1+n))/20.
%F a(n) = (sqrt(5)*2^(1-n)*((1+sqrt(5))^(n+1)-(1-sqrt(5))^(n+1))+10*(n+1)-10)/20 for n even.
%F a(n) = (sqrt(5)*2^(1-n)*((1+sqrt(5))^(n+1)-(1-sqrt(5))^(n+1))-10*(n+1))/20 for n odd.
%F (End)
%e a(5) = (1,-1,2,-2,3,-3)**(1,1,2,3,5,8)=1*8-1*5+2*3-2*2+3*1-3*1 = 5.
%t f[x_] := (1 - x^2) (1 + x); g[x] := 1 - x - x^2;
%t s = Normal[Series[1/(f[x] g[x]), {x, 0, 60}]]
%t c = CoefficientList[s, x] (* A213043 *)
%t LinearRecurrence[{0, 3, 1, -2, -1}, {1, 0, 3, 1, 7}, 60]
%t Table[Fibonacci[n+1] + ((-1)^n (2n+1) - 1)/4, {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 29 2015 *)
%o (PARI) Vec(1/((1-x)*(1+x)^2*(1-x-x^2)) + O(x^50)) \\ _Colin Barker_, Mar 16 2016
%Y Cf. A000045, A213500.
%K nonn,easy
%O 0,3
%A _Clark Kimberling_, Jun 10 2012