The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106344 Triangle read by rows: T(n,k) = binomial(k,n-k) mod 2. 15
 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS A skew version of Sierpinski’s triangle A047999. - Johannes W. Meijer, Jun 05 2011 Row sums are A002487(n+1). Diagonal sums are A106345. Inverse is A106346. Triangle formed by reading T triangle mod 2 with T := A026729, A062110, A084938, A099093, A106344, A109466, A110517, A112883, A130167. - Philippe Deléham, Dec 18 2008 LINKS G. C. Greubel, Rows n = 0..50, flattened Thomas Baruchel, Flattening Karatsuba's Recursion Tree into a Single Summation, SN Computer Science (2020) Vol. 1, Article No. 48. George Beck and Karl Dilcher, A Matrix Related to Stern Polynomials and the Prouhet-Thue-Morse Sequence, arXiv:2106.10400 [math.CO], 2021. See (1.6) p. 2. EXAMPLE Triangle begins   1;   0, 1;   0, 1, 1;   0, 0, 0, 1;   0, 0, 1, 1, 1;   0, 0, 0, 1, 0, 1; MAPLE seq(seq(`mod`(binomial(k, n-k), 2), k = 0..n), n = 0..15); # G. C. Greubel, Feb 07 2020 MATHEMATICA Table[Mod[Binomial[k, n-k], 2], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 18 2017 *) PROG (PARI) T(n, k) = binomial(k, n-k)%2; for(n=0, 15, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 07 2020 (Magma) [ Binomial(k, n-k) mod 2: k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 07 2020 (Sage) [[ mod(binomial(k, n-k), 2) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Feb 07 2020 (GAP) Flat(List([0..15], n-> List([0..n], k-> (Binomial(k, n-k) mod 2) ))); # G. C. Greubel, Feb 07 2020 CROSSREFS Cf. A047999, A002487. Cf. A106345 (diagonal sums), A106346 (inverse). Cf. A026729, A062110, A084938, A099093, A106344, A109466, A110517, A112883, A130167. Sequence in context: A321016 A077051 A115955 * A106346 A296212 A189921 Adjacent sequences:  A106341 A106342 A106343 * A106345 A106346 A106347 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, Apr 29 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 30 14:51 EDT 2022. Contains 354943 sequences. (Running on oeis4.)