|
|
A106344
|
|
Triangle read by rows: T(n,k) = binomial(k,n-k) mod 2.
|
|
15
|
|
|
1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
A skew version of Sierpinski’s triangle A047999. - Johannes W. Meijer, Jun 05 2011
Row sums are A002487(n+1). Diagonal sums are A106345. Inverse is A106346.
Triangle formed by reading T triangle mod 2 with T := A026729, A062110, A084938, A099093, A106344, A109466, A110517, A112883, A130167. - Philippe Deléham, Dec 18 2008
|
|
LINKS
|
G. C. Greubel, Rows n = 0..50, flattened
Thomas Baruchel, Flattening Karatsuba's Recursion Tree into a Single Summation, SN Computer Science (2020) Vol. 1, Article No. 48.
|
|
EXAMPLE
|
Triangle begins
1;
0, 1;
0, 1, 1;
0, 0, 0, 1;
0, 0, 1, 1, 1;
0, 0, 0, 1, 0, 1;
|
|
MAPLE
|
seq(seq(`mod`(binomial(k, n-k), 2), k = 0..n), n = 0..15); # G. C. Greubel, Feb 07 2020
|
|
MATHEMATICA
|
Table[Mod[Binomial[k, n-k], 2], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 18 2017 *)
|
|
PROG
|
(PARI) T(n, k) = binomial(k, n-k)%2;
for(n=0, 15, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 07 2020
(MAGMA) [ Binomial(k, n-k) mod 2: k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 07 2020
(Sage) [[ mod(binomial(k, n-k), 2) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Feb 07 2020
(GAP) Flat(List([0..15], n-> List([0..n], k-> (Binomial(k, n-k) mod 2) ))); # G. C. Greubel, Feb 07 2020
|
|
CROSSREFS
|
Sequence in context: A321016 A077051 A115955 * A106346 A296212 A189921
Adjacent sequences: A106341 A106342 A106343 * A106345 A106346 A106347
|
|
KEYWORD
|
easy,nonn,tabl
|
|
AUTHOR
|
Paul Barry, Apr 29 2005
|
|
STATUS
|
approved
|
|
|
|